Coexistence of type-II Dirac point and weak topological phase in Pt 3 Sn

Date
2017-11-06
Authors
Kim, Minsung
Wang, Cai-Zhuang
Ho, Kai-Ming
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Ames Laboratory
Organizational Unit
Physics and Astronomy
Organizational Unit
Journal Issue
Series
Abstract

Intriguing topological phases may appear in both insulating and semimetallic states. Topological insulators exhibit topologically nontrivial band inversion, while topological Dirac/Weyl semimetals show “relativistic” linear band crossings. Here, we report an unusual topological state of Pt3Sn, where the two topological features appear simultaneously. Based on first-principles calculations, we show that Pt3Sn is a three-dimensional weak topological semimetal with topologically nontrivial band inversion between the valence and conduction bands, where the band structure also possesses type-II Dirac points at the boundary of two electron pockets. The formation of the Dirac points can be understood in terms of the representations of relevant symmetry groups and the compatibility relations. The topological surface states appear in accordance with the nontrivial bulk band topology. The unique coexistence of the two distinct topological features in Pt3Sn enlarges the material scope in topological physics, and is potentially useful for spintronics.

Description
Keywords
Citation
DOI
Collections