Adenine-induced hyperphosphatemia in a murine model of renal insufficiency

Thumbnail Image
Date
2017-01-01
Authors
Piccione, Michelle
Bishop, Jeff
Fulmer, Tyler
Schwahn, Denise
Helvig, Christian
Petkovich, Martin
Cook, Mark
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Bobeck, Elizabeth
Associate Professor
Research Projects
Organizational Units
Organizational Unit
Animal Science

The Department of Animal Science originally concerned itself with teaching the selection, breeding, feeding and care of livestock. Today it continues this study of the symbiotic relationship between animals and humans, with practical focuses on agribusiness, science, and animal management.

History
The Department of Animal Husbandry was established in 1898. The name of the department was changed to the Department of Animal Science in 1962. The Department of Poultry Science was merged into the department in 1971.

Historical Names

Journal Issue
Is Version Of
Versions
Series
Department
Abstract

Hyperphosphatemia in chronic kidney disease (CKD) patients is a risk factor for cardiovascular events, progressive kidney failure, and mortality. Improved therapeutic interventions to control hyperphosphatemia depend greatly on robust animal models that recapitulate the CKD disease process. Murine-based models of CKD as compared to rat models present significant advantages due to available genetic knockout lines that permit mechanistic dissection of CKD etiologies. The rat adenine model of renal failure has been extensively studied, and studies are now emerging describing adenine-induced renal failure in murine models. However, these newly developed murine models have not fully described the responses to calcitriol and phosphate binders, and the reported effects of adenine on serum phosphate is often lacking in murine models. Therefore, the objectives of this study were: 1) To induce hyperphosphatemia in mice using adenine with minimal mortality, and 2) Report the influence of calcitriol and phosphate binders on the disease process through measurement of serum phosphate and histology. In one approach, C57BL/6 male mice gavaged with 4 or 6 mg adenine/day, as compared to 0 mg adenine/day developed hyperphosphatemia, with low mortality. In a second approach, calcitriol exacerbated adenine-induced increases in serum phosphate at day 7 of adenine administration (p<0.05). Notably, adenine treated mice had 4-fold increased stomach weights vs. non-adenine treated mice (p<0.0001). The addition of a phosphate binder (experiment 3, sevelamer hydrochloride) was ineffective at preventing an adenine-induced increase in blood phosphate, a finding that likely resulted from adenine’s inhibition of gastric emptying. We report the successful use of adenine to induce hyperphosphatemia, that the hyperphosphatemic status is exacerbated by calcitriol, and a limitation of the model for studying oral therapies for hyperphosphatemia.

Comments

This article is published as EA Bobeck, ML Piccione, JW Bishop, TG Fulmer, DJ Schwahn, C Helvig, M Petkovich, and ME Cook. 2017. Adenine-induced hyperphosphatemia in a murine model of renal insufficiency. Nephrol Renal Dis. 2(3). doi: 10.15761/NRD.1000126. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Sun Jan 01 00:00:00 UTC 2017
Collections