Models for the Frequency Dependence of Ultrasonic Scattering from Real Flaws

Thumbnail Image
Date
1977-09-01
Authors
Adler, Laszlo
Lewis, Kent
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

My objective is to help develop a quantitative working model for a typical nondestructive testing system. Specifically, our objective is to relate the parameters which characterize a defect s~ch as size, orientation, and shape to the ultrasonic scattering field parameters such as amplitude, frequency, scattering angle, and polarization or mode conversion. In Fig. 1 is shown a flat surface sample immersed in liquid containing a real flaw a certain distance below the surface; i.e., in the bulk of the material. Sound waves propagate through the liquid and for the simplest case the wave front enters such that only incident longitudinal waves are present. The waves .at the flaw are scattered, and also mode converted; the scattered wave, which will now be both shear and longitudinal will be reconverted back to a longitudinal wave once leaving the solid body and picked up by a receiver oriented at some angle.

Series Number
Journal Issue
Is Version Of
Versions
Series
Interdisciplinary Program for Quantitative Flaw Definition Annual Reports
Academic or Administrative Unit
Type
report
Comments
Rights Statement
Copyright
Sat Jan 01 00:00:00 UTC 1977
Funding
DOI
Supplemental Resources
Source
Collections