FEM modeling of plastic flow and strain-induced phase transformation in BN under high pressure and large shear in a rotational diamond anvil cell
dc.contributor.author | Feng, Biao | |
dc.contributor.author | Levitas, Valery | |
dc.contributor.author | Li, Wanghui | |
dc.contributor.department | Department of Aerospace Engineering | |
dc.contributor.department | Ames National Laboratory | |
dc.contributor.department | Mechanical Engineering | |
dc.contributor.department | Department of Materials Science and Engineering | |
dc.contributor.department | Ames Laboratory | |
dc.date | 2018-10-27T05:23:10.000 | |
dc.date.accessioned | 2020-06-29T22:45:26Z | |
dc.date.available | 2020-06-29T22:45:26Z | |
dc.date.copyright | Mon Jan 01 00:00:00 UTC 2018 | |
dc.date.issued | 2018-01-01 | |
dc.description.abstract | <p>Combined three-dimensional plastic flow and strain-induced phase transformation (PT) in boron nitride (BN) under high pressure and large shear in a rotational diamond anvil cell (rotational DAC or RDAC) are investigated. Geometrically nonlinear frameworks including finite elastic, transformational, and plastic deformations and finite element method (FEM) are utilized. Quantitative information is obtained on the evolutions of the stress tensor, plastic strain, volume fraction of phases in the entire sample, and slip-cohesion transitions, all during torsion under a fixed compressive load in RDAC. The effects of the applied compressive stress and the sample radius on PT and plastic flow are discussed. In comparison with DAC, the same amount of the high-pressure phase can be obtained at a much lower pressure in RDAC, which reduces the required force and the risk of diamond fracture. Also, RDAC has a potential to complete PT during torsion under pressure close to the minimum possible. A quasi-homogeneous pressure can be obtained in a transforming sample in RDAC under a proper choice of properties and parameters of a gasket. A number of experimental phenomena, including the pressure self-multiplication and quasi-homogeneous pressures in DAC and RDAC, are reproduced and interpreted. The simulation results provide a significant insight into coupled PTs and plastic flow in material in RDAC, and are important for the optimum design of experiments and the extraction of material parameters for PT, as well as for the optimization and control of PTs by the variation of various parameters.</p> | |
dc.description.comments | <p>This is a pre-print of the article Feng, Biao, Valery I. Levitas, and Wanghui Li, "FEM modeling of plastic flow and strain-induced phase transformation in BN under high pressure and large shear in a rotational diamond anvil cell." 2018.</p> | |
dc.format.mimetype | application/pdf | |
dc.identifier | archive/lib.dr.iastate.edu/aere_pubs/128/ | |
dc.identifier.articleid | 1129 | |
dc.identifier.contextkey | 13158113 | |
dc.identifier.s3bucket | isulib-bepress-aws-west | |
dc.identifier.submissionpath | aere_pubs/128 | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/1972 | |
dc.language.iso | en | |
dc.source.bitstream | archive/lib.dr.iastate.edu/aere_pubs/128/2018_Levitas_FEMModeling.pdf|||Fri Jan 14 19:30:26 UTC 2022 | |
dc.subject.disciplines | Condensed Matter Physics | |
dc.subject.disciplines | Materials Science and Engineering | |
dc.subject.disciplines | Structures and Materials | |
dc.subject.keywords | Elastoplasticity | |
dc.subject.keywords | Strain-induced phase transformation | |
dc.subject.keywords | High pressure | |
dc.subject.keywords | Plastic shear | |
dc.subject.keywords | Rotational Diamond anvil cell | |
dc.subject.keywords | Large deformation | |
dc.title | FEM modeling of plastic flow and strain-induced phase transformation in BN under high pressure and large shear in a rotational diamond anvil cell | |
dc.type | article | |
dc.type.genre | article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 850871e3-115a-428e-82cc-cbfafef5cf66 | |
relation.isOrgUnitOfPublication | 047b23ca-7bd7-4194-b084-c4181d33d95d | |
relation.isOrgUnitOfPublication | 25913818-6714-4be5-89a6-f70c8facdf7e | |
relation.isOrgUnitOfPublication | 6d38ab0f-8cc2-4ad3-90b1-67a60c5a6f59 | |
relation.isOrgUnitOfPublication | bf9f7e3e-25bd-44d3-b49c-ed98372dee5e |
File
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 2018_Levitas_FEMModeling.pdf
- Size:
- 1.42 MB
- Format:
- Adobe Portable Document Format
- Description: