Low-force compressive and tensile actuation for elastocaloric heat pumps

Date
2020-06-01
Authors
Czernuszewicz, Agata
Griffith, Lucas
Slaughter, Julie
Pecharsky, Vitalij
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Ames Laboratory
Organizational Unit
Journal Issue
Series
Abstract

The elastocaloric effect underpins a promising solid-state heat pumping technology that, when adopted for commercial and residential applications, can revolutionize the cooling and heating industry due to low environmental impact and substantial energy savings. Known operational demonstration devices based on the elastocaloric effect suffer from low endurance of materials and, in most experimental systems, from large footprints due to bulky actuators required to provide sufficient forces and displacements. We demonstrate a new approach which has the potential to enable a more effective exploitation of the elastocaloric effect by reducing the forces required for actuation. Thin strips of NiTi were incorporated into composite structures with base polymer, such that bending the structures results in either exclusively compression or exclusively tension applied to the elastocaloric strips. The structures allow compression of thin elastocaloric strips without buckling, realize more than 50 % reduction in required forces for a given strain compared with axial loading, and open up a wide range of possibilities for compact, efficient elastocaloric devices.

Description
Keywords
Elastocaloric effect, NiTi, Solid-state refrigeration, Strain gauges, Superelasticity
Citation
DOI
Collections