Chloride-binding capacity of cement-GGBFS-nanosilica composites under seawater chloride-rich environment

Thumbnail Image
Date
2022-08-01
Authors
Qu, Fulin
Li, Wengui
Guo, Yipu
Zhang, Shishun
Zhou, John L.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Ltd.
Authors
Person
Wang, Kejin
Professor
Research Projects
Organizational Units
Organizational Unit
Civil, Construction and Environmental Engineering

The Department of Civil, Construction, and Environmental Engineering seeks to apply knowledge of the laws, forces, and materials of nature to the construction, planning, design, and maintenance of public and private facilities. The Civil Engineering option focuses on transportation systems, bridges, roads, water systems and dams, pollution control, etc. The Construction Engineering option focuses on construction project engineering, design, management, etc.

History
The Department of Civil Engineering was founded in 1889. In 1987 it changed its name to the Department of Civil and Construction Engineering. In 2003 it changed its name to the Department of Civil, Construction and Environmental Engineering.

Dates of Existence
1889-present

Historical Names

  • Department of Civil Engineering (1889-1987)
  • Department of Civil and Construction Engineering (1987-2003)
  • Department of Civil, Construction and Environmental Engineering (2003–present)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract
The effects of granulated blast furnace slag (GGBFS) and nano-silica (NS) on the chloride-binding capacity of cement paste after 6-month exposure to seawater chloride-rich solutions were investigated in this paper. The pH, chloride-binding ratio (CBR), leaching behavior, and phase transformation were investigated by various experimental and analysis methods. Thermodynamic modeling was also used to study the phase assemblages for the Portland cement-GGBFS-NS composites exposed to the NaCl and MgCl2 solutions. It was found that for all cementitious composites, more chlorides were bounded in samples exposed to the salt solutions with sodium ions than that with magnesium ions. Proper additions of GGBFS and NS can enhance the chloride-binding capacity of cementitious composites. The results confirm that the addition of GGBFS can improve the chemical chloride-binding capacity because of the increased amount of chloroaluminate. The increased amount of hydrated gels in the cementitious composites with GGBFS also improved the physical chloride-binding capacity. The addition of NS increased the physical chloride-binding capacity due to the more formation of C-S-H/C-A-S-H gels, while the excessive addition of NS left less aluminum phase available for the formation of chloroaluminate, thus further decreased the chemical chloride-binding capacity. Magnesium ions in solutions increased the amount of chloride in the diffuse layer of C-S-H gels and hydrotalcite. The related results provide novel insight into the influences of GGBFS and NS on the chloride-binding capacity of cementitious composites under chloride-rich environments.
Comments
This is a manuscript of an article published as Qu, Fulin, Wengui Li, Yipu Guo, Shishun Zhang, John L. Zhou, and Kejin Wang. "Chloride-binding capacity of cement-GGBFS-nanosilica composites under seawater chloride-rich environment." Construction and Building Materials 342 (2022): 127890. DOI: 10.1016/j.conbuildmat.2022.127890. Copyright 2022 Elsevier Ltd. Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). Posted with permission.
Description
Keywords
Citation
DOI
Copyright
Collections