Ab Initio Study of the Molecular and Electronic Structure of CoCH2+ and of the Reaction Mechanism of CoCH2+ + H2
Date
Authors
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Both CASSCF and MR-SDCI-CASSCF methods have been used with two different effective core potentials to investigate the molecular and electronic structures of CoCH2+, as well as the mechanism for the reaction CoCH2+ + H2. Four electronic states of CoCH2+ are very low lying: the ground state is a nearly degenerate pair (3A2 and 3A1), and the 3B1 and 3B2 states are only 4-8 kcal/mol higher in energy. The binding energy of C O C H ~ + ( ~ Are~la)t,iv e to that of C ~ + ( ~ F , s l d+~ C)H 2(3B1), is estimated to be 70-80 kcal/mol. A similar hydrogenolysis reaction mechanism holds for the 3A2 and 3A1 states of the CoCH2+ + H2 reactants: In the first step, the reactants yield an ion-molecule complex, (H2)CoCH2+, stabilized by 8-9 kcal/mol. Subsequently, the H-H bond is activated, leading to a four-center transition state with an energy barrier of about 31-34 kcal/mol. An intermediate complex, HCoCH3+, is predicted to be a minimum at the CASSCF level, but MR-SDCI-CASSCF single-point calculations suggest that this minimum disappears at the higher level of theory. Following H-H bond cleavage, a CoCH4+ ion-molecule complex is formed, with a stabilization energy of 19-22 kcal/mol. The CoCH2+ hydrogenolysis reaction is predicted to be exothermic by 20-30 kcal/mol. The channels leading to formation of CoH+ + CH3 and CoCH3+ + H are endothermic by about 5-1 2 kcal/mol. The reverse reaction Co+ + CH4 may give only one product, the ion-molecule complex CoCH4+ at moderate temperatures. An increase in the available kinetic energy would make it possible to form dissociation products: CoH+ + CH3 and CoCH3+ + H. Although the channel leading to CoCH2+ + H2 is thermodynamically more favorable, a large barrier prevents it from taking place. Hay-Wadt and Stevens-Krauss-Basch-Jasien pseudopotentials give qualitatively the same results.
Series Number
Journal Issue
Is Version Of
Versions
Series
Academic or Administrative Unit
Type
Comments
Reprinted (adapted) with permission from Journal of Physical Chemistry 97 (1993): 11435, doi:10.1021/j100146a016. Copyright 1993 American Chemical Society.