On the stability in oscillations in a class of nonlinear feedback systems containing numerator dynamics

Thumbnail Image
Date
1984
Authors
Krenz, Gary
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Abstract

This dissertation is the analysis of the existence, local uniqueness and stability properties of almost sinusoidal oscillations in a class of nonlinear control systems. These systems are modeled by nonlinear ordinary differential equations of the form q(D)x + n(p(D)x) = r(t), where p and q are real polynomials, the degree of p is strictly less than the degree of q, n((.)) is an odd continuous function with some additional piecewise differentiability properties, D = d/dt and r(t) is either identically zero or periodic with a nontrivial period.;The analysis uses the classical single-input sinusoidal describing function, averaging and standard perturbation arguments. If a system parameter is sufficiently small, the existence and local uniqueness of an almost sinusoidal oscillation is guaranteed. Furthermore, the stability of the oscillation is easily checked by a modified Routh-Hurwitz test.;Numerical examples illustrating the results are included.

Series Number
Journal Issue
Is Version Of
Versions
Series
Academic or Administrative Unit
Type
dissertation
Comments
Rights Statement
Copyright
Sun Jan 01 00:00:00 UTC 1984
Funding
Subject Categories
Supplemental Resources
Source