Infield Biomass Sorghum Yield Component Traits Extraction Pipeline Using Stereo Vision

Thumbnail Image
Date
2016-01-01
Authors
Tang, Lie
Salas-Fernandez, Maria
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Tang, Lie
Professor
Person
Salas-Fernandez, Maria
Associate Professor
Research Projects
Organizational Units
Organizational Unit
Agronomy

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

History
The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence
1902–present

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
AgronomyAgricultural and Biosystems EngineeringHuman Computer InteractionPlant Sciences Institute
Abstract

Yield component traits such as plant height and stem diameter are dominant phenotypic data for biomass sorghum yield prediction. Extraction of these traits by machine vision during the growing season significantly reduces labor and time cost for large breeding programs. An automated 3D point cloud processing pipeline was developed to quantify different phenotypic variations in plant architecture of infield biomass sorghum. The input point cloud was generated by three side-view stereo camera heads placed vertically to capture extremely high plants. The features were extracted on a row plot basis instead of individual due to severe occlusion caused by densely populated leaves. Available features include plant height, plant width, vegetation volume index, and vegetation area index. Our strategy was to slice the point cloud along row direction into several equal volume slices and sum up the feature values with weights based on the point population and distribution in each volume slice. Therefore, the results were robust against empty space and abnormal individuals in the row plot. In addition, a semi-automated user interface was developed for users to measure stem diameters from the stereo images according to their specific sampling strategies. Users only need to zoom in on a stem segment and pick four corners of the rectangular segment. Metric measurement is then computed automatically based on image patch stereo matching using normalized cross correlation. The extracted stem diameters were compared to manual measurements in the field and a high correlation was obtained. The extracted features revealed great potential for automated field-based high-throughput phenotyping for plant architecture.

Comments

This proceeding is published as Bao, Yin, Lie Tang, Patrick S. Schnable, and Maria G. Salas Fernandez. "Infield Biomass Sorghum Yield Component Traits Extraction Pipeline Using Stereo Vision." ASABE Annual International Meeting, Orlando, FL, July 17-20, 2016. Paper No. 162462338. DOI: 10.13031/aim.20162462338. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2016