An Autonomic Virtual Topology Design and Two-Stage Scheduling Algorithm for Light-Trail WDM Networks

dc.contributor.author Gumaste, Ashwin
dc.contributor.author Das, Tamal
dc.contributor.author Mathew, Ashish
dc.contributor.author Somani, Arun
dc.contributor.department Department of Electrical and Computer Engineering
dc.date 2021-02-10T16:33:35.000
dc.date.accessioned 2021-02-25T17:18:48Z
dc.date.available 2021-02-25T17:18:48Z
dc.date.copyright Sat Jan 01 00:00:00 UTC 2011
dc.date.issued 2011-04-01
dc.description.abstract <p>Light-trails (LTs) have been proposed as a solution for optical networking to provide support for emerging services such as <em>video-on-demand</em>, pseudo-wires, data-centers, etc. To provision these services we require features such as dynamic bandwidth provisioning, optical multicasting, sub-wavelength grooming and a low-cost hardware platform—all of which are available through the LT concept. Architectural, performance, resilience and implementation studies of LTs have led to consideration of this technology in metropolitan networks. In the area of architecture and performance, significant literature is available in terms of static network optimization. An area that has not yet been considered and which is of service provider importance (from an implementation perspective) is the stochastic behavior and dynamic growth of the LT virtual topology. In this paper, we propose a two-stage scheduling algorithm that efficiently allocates bandwidth to nodes within a LT and also grows the virtual topology of LTs based on basic utility theory. The algorithm facilitates growth of the LT topology fathoming across all the necessary and sufficient parameters. The algorithm is formally stated, analyzed using Markov models and verified through simulations, resulting in 45% betterment over existing linear program (LP) or heuristic models. The outcome of the growth algorithm is an <em>autonomic optical network</em> that suffices for service provider needs while lowering operational and capital costs. This paper presents the first work in the area of dual topology planning—at the level of connections as well as at the level of the network itself.</p>
dc.description.comments <p>This article is published as Gumaste, Ashwin, Tamal Das, Ashish Mathew, and Arun Somani. "An autonomic virtual topology design and two-stage scheduling algorithm for light-trail WDM networks." <em>IEEE/OSA Journal of Optical Communications and Networking</em> 3, no. 4 (2011): 372-389. DOI: <a href="https://doi.org/10.1364/JOCN.3.000372" target="_blank">10.1364/JOCN.3.000372</a>. Posted with permission.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/ece_pubs/298/
dc.identifier.articleid 1292
dc.identifier.contextkey 21567127
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath ece_pubs/298
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/94005
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/ece_pubs/298/2011_SomaniArun_AutonomicVirtual.pdf|||Fri Jan 14 23:15:50 UTC 2022
dc.source.uri 10.1364/JOCN.3.000372
dc.subject.disciplines Electromagnetics and Photonics
dc.subject.disciplines Systems and Communications
dc.subject.keywords light-trail
dc.subject.keywords ROADM
dc.title An Autonomic Virtual Topology Design and Two-Stage Scheduling Algorithm for Light-Trail WDM Networks
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication edede50a-4e31-44f3-a7c7-a06dc8db42c2
relation.isOrgUnitOfPublication a75a044c-d11e-44cd-af4f-dab1d83339ff
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2011_SomaniArun_AutonomicVirtual.pdf
Size:
882.12 KB
Format:
Adobe Portable Document Format
Description:
Collections