Natural Selection of Asphalt Mix Stiffness Predictive Models with Genetic Programming

Thumbnail Image
Date
2010-01-01
Authors
Gopalakrishnan, Kasthurirangan
Kim, Sunghwan
Khaitan, Siddhartha
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Ceylan, Halil
Professor Professor
Person
Siddhartha, Khaitan
Research Assistant Professor
Research Projects
Organizational Units
Organizational Unit
Civil, Construction and Environmental Engineering

The Department of Civil, Construction, and Environmental Engineering seeks to apply knowledge of the laws, forces, and materials of nature to the construction, planning, design, and maintenance of public and private facilities. The Civil Engineering option focuses on transportation systems, bridges, roads, water systems and dams, pollution control, etc. The Construction Engineering option focuses on construction project engineering, design, management, etc.

History
The Department of Civil Engineering was founded in 1889. In 1987 it changed its name to the Department of Civil and Construction Engineering. In 2003 it changed its name to the Department of Civil, Construction and Environmental Engineering.

Dates of Existence
1889-present

Historical Names

  • Department of Civil Engineering (1889-1987)
  • Department of Civil and Construction Engineering (1987-2003)
  • Department of Civil, Construction and Environmental Engineering (2003–present)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

Genetic Programming (GP) is a systematic, domain-independent evolutionary computation technique that stochastically evolves populations of computer programs to perform a user-defined task. Similar to Genetic Algorithms (GA) which evolves a population of individuals to better ones, GP iteratively transforms a population of computer programs into a new generation of programs by applying biologically inspired operations such as crossover, mutation, etc. In this paper, a population of Hot-Mix Asphalt (HMA) dynamic modulus stiffness prediction models is genetically evolved to better ones by applying the principles of genetic programming. The HMA dynamic modulus (|E*|), one of the stiffness measures, is the primary HMA material property input in the new Mechanistic Empirical Pavement Design Guide (MEPDG) developed under National Cooperative Highway Research Program (NCHRP) 1-37A (2004) for the American State Highway and Transportation Officials (AASHTO). It is shown that the evolved HMA model through GP is reasonably compact and contains both linear terms and low-order non-linear transformations of input variables for simplification.

Comments

This is a manuscript of an article in ANNIE 2010, artificial Neural Networks in Engineering, St. Louis, Missouri, November 1-3, 2010. Posted with permission.

Description
Keywords
Citation
DOI
Source
Copyright
Fri Jan 01 00:00:00 UTC 2010