A Nanoindentation Study of the Plastic Deformation and Fracture Mechanisms in Single-Crystalline CaFe2As2

dc.contributor.author Frawley, Keara
dc.contributor.author Bakst, Ian
dc.contributor.author Sypek, John
dc.contributor.author Canfield, Paul
dc.contributor.author Vijayan, Sriram
dc.contributor.author Weinberger, Christopher
dc.contributor.author Canfield, Paul
dc.contributor.author Aindow, Mark
dc.contributor.author Lee, Seok-Woo
dc.contributor.department Ames Laboratory
dc.contributor.department Physics and Astronomy
dc.date 2018-06-15T14:26:52.000
dc.date.accessioned 2020-06-29T23:21:11Z
dc.date.available 2020-06-29T23:21:11Z
dc.date.embargo 2019-04-10
dc.date.issued 2018-01-01
dc.description.abstract <p>The plastic deformation and fracture mechanisms in single-crystalline CaFe2As2 has been studied using nanoindentation and density functional theory simulations. CaFe2As2 single crystals were grown in a Sn-flux, resulting in homogeneous and nearly defect-free crystals. Nanoindentation along the [001] direction produces strain bursts, radial cracking, and lateral cracking. Ideal cleavage simulations along the [001] and [100] directions using density functional theory calculations revealed that cleavage along the [001] direction requires a much lower stress than cleavage along the [100] direction. This strong anisotropy of cleavage strength implies that CaFe2As2 has an atomic-scale layered structure, which typically exhibits lateral cracking during nanoindentation. This special layered structure results from weak atomic bonding between the (001) Ca and Fe2As2 layers.</p>
dc.identifier archive/lib.dr.iastate.edu/ameslab_manuscripts/187/
dc.identifier.articleid 1191
dc.identifier.contextkey 12323700
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath ameslab_manuscripts/187
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/7108
dc.language.iso en
dc.relation.ispartofseries IS-J 9667
dc.source.bitstream archive/lib.dr.iastate.edu/ameslab_manuscripts/187/IS_J_9667.pdf|||Fri Jan 14 21:45:50 UTC 2022
dc.source.uri 10.1007/s11837-018-2851-y
dc.subject.disciplines Condensed Matter Physics
dc.subject.disciplines Materials Science and Engineering
dc.title A Nanoindentation Study of the Plastic Deformation and Fracture Mechanisms in Single-Crystalline CaFe2As2
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication c5a8128b-7d98-4b8f-92d7-b1385e345713
relation.isOrgUnitOfPublication 25913818-6714-4be5-89a6-f70c8facdf7e
relation.isOrgUnitOfPublication 4a05cd4d-8749-4cff-96b1-32eca381d930
Original bundle
Now showing 1 - 1 of 1
554.86 KB
Adobe Portable Document Format