(4, 2)-Choosability of Planar Graphs with Forbidden Structures
Date
Authors
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
All planar graphs are 4-colorable and 5-choosable, while some planar graphs are not 4-choosable. Determining which properties guarantee that a planar graph can be colored using lists of size four has received significant attention. In terms of constraining the structure of the graph, for any ℓ ∈ {3, 4, 5, 6, 7}, a planar graph is 4-choosable if it is ℓ-cycle-free. In terms of constraining the list assignment, one refinement of k-choosability is choosability with separation. A graph is (k, s)-choosable if the graph is colorable from lists of size k where adjacent vertices have at most s common colors in their lists. Every planar graph is (4, 1)-choosable, but there exist planar graphs that are not (4, 3)-choosable. It is an open question whether planar graphs are always (4, 2)-choosable. A chorded ℓ-cycle is an ℓ-cycle with one additional edge. We demonstrate for each ℓ ∈ {5, 6, 7} that a planar graph is (4, 2)-choosable if it does not contain chorded ℓ-cycles.
Series Number
Journal Issue
Is Version Of
Versions
Series
Academic or Administrative Unit
Type
Comments
This is a pre-print of an article published in Graphs and Combinatorics. The final authenticated version is available online at doi: 10.1007/s00373-017-1812-5.