Elucidating the role of temperature and water on the π-complexation strength of copper(I) ion-containing ionic liquids using inverse gas chromatography

Thumbnail Image
Date
2023-11-11
Authors
Eor, Philip
Tryon-Tasson, Nicholas
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Abstract
Background The π-complexation capability of copper(I) ion has been exploited in olefin/paraffin separations, but its propensity of undergoing disproportionation to copper(II) ion and copper metal has limited its use. Imidazolium-based ionic liquids (ILs) can serve as solvents for copper(I) ions as they facilitate copper(I) ion-olefin complexation and can enhance its stability. To precisely monitor how copper(I) ions complex with olefins in ILs and evaluate the effects of environmental factors, it is necessary to construct an experimental platform capable of quantitatively measuring their molecular-level interactions. (84). Results This study employs an innovative inverse chromatography platform to measure changes in molecular-level interactions between copper(I) ions and olefins when the temperature and water content in the system are carefully controlled. Gas chromatographic stationary phases comprised of the 1-decyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C10MIM+][NTf2-]) IL containing 0.5 M [Cu+][NTf2-] were pre-heated to 140 °C maximizing copper(I) ion's π-complexation capability. The chromatographic retention of alkenes, dienes, and alkynes on the copper(I) ion/IL stationary phase was observed to be predominantly influenced by their partitioning between the carrier gas and copper(I) ion as well as between the IL and copper(I) ion. Upon introducing water to the system, the Gibbs free energy of solvation for olefins showed less favorable solvation into the stationary phase. In contrast, their solvation was significantly enhanced when the [Cu+][NTf2-]/[C10MIM+][NTf2-] stationary phase was heated to an elevated temperature, indicating that the π-complexation capability of copper(I) ion can be regenerated as needed. (148). Significance This study demonstrates that the stability of copper(I) ions can be improved by dissolving them into appropriate IL solvents. Moreover, the olefin separation performance of the copper(I) ion/IL stationary phase was found to be adjustable by the application of different column treatment conditions (i.e., heating and water introduction), opening the possibility of devising more stable, reliable, and efficient olefin separation systems based on copper(I) ion and IL solvents. (68).
Series Number
Journal Issue
Is Version Of
Versions
Series
Academic or Administrative Unit
Type
article
Comments
This is a manuscript of an article published as: P. Eor, N. Tryon-Tasson, J.L. Anderson, Elucidating the role of temperature and water on the π-complexation strength of copper(I) ion-containing ionic liquids using inverse gas chromatography, Analytica Chimica Acta (2023), doi: https://doi.org/10.1016/j.aca.2023.34202. © 2023 Published by Elsevier B.V. CC BY-NC-ND
Rights Statement
Copyright
Funding
Subject Categories
DOI
Supplemental Resources
Collections