Long-range dependence analysis of Internet traffic

dc.contributor.author Park, Cheolwoo
dc.contributor.author Le, Long
dc.contributor.author Marron, J.
dc.contributor.author Park, Juhyun
dc.contributor.author Pipiras, Vladas
dc.contributor.author Smith, F.
dc.contributor.author Smith, Richard
dc.contributor.author Trovero, Michele
dc.contributor.author Zhu, Zhengyuan
dc.contributor.department Statistics (LAS)
dc.date 2018-03-22T17:04:17.000
dc.date.accessioned 2020-07-02T06:56:45Z
dc.date.available 2020-07-02T06:56:45Z
dc.date.copyright Sat Jan 01 00:00:00 UTC 2011
dc.date.issued 2011-07-01
dc.description.abstract <p>Long-range-dependent time series are endemic in the statistical analysis of Internet traffic. The Hurst parameter provides a good summary of important self-similar scaling properties. We compare a number of different Hurst parameter estimation methods and some important variations. This is done in the context of a wide range of simulated, laboratory-generated, and real data sets. Important differences between the methods are highlighted. Deep insights are revealed on how well the laboratory data mimic the real data. Non-stationarities, which are local in time, are seen to be central issues and lead to both conceptual and practical recommendations.</p>
dc.description.comments <p>This is an Accepted Manuscript of an article published by Taylor & Francis as Park, Cheolwoo, Félix Hernández-Campos, Long Le, J. S. Marron, Juhyun Park, Vladas Pipiras, F. D. Smith, Richard L. Smith, Michele Trovero, and Zhengyuan Zhu. "Long-range dependence analysis of Internet traffic." <em>Journal of Applied Statistics</em> 38, no. 7 (2011): 1407-1433. Available online DOI: <a href="http://dx.doi.org/10.1080/02664763.2010.505949" target="_blank">10.1080/02664763.2010.505949</a>. Posted with permission.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/stat_las_pubs/137/
dc.identifier.articleid 1132
dc.identifier.contextkey 11818964
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath stat_las_pubs/137
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/90440
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/stat_las_pubs/137/2011_Zhu_LongRange.pdf|||Fri Jan 14 19:59:05 UTC 2022
dc.source.uri 10.1080/02664763.2010.505949
dc.subject.disciplines Longitudinal Data Analysis and Time Series
dc.subject.disciplines Statistical Methodology
dc.subject.disciplines Statistics and Probability
dc.subject.keywords Hurst parameter
dc.subject.keywords Internet traffic
dc.subject.keywords long-range dependence
dc.subject.keywords multiscale analysis
dc.subject.keywords non-stationarity
dc.title Long-range dependence analysis of Internet traffic
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication 51db2a08-8f9d-4f97-bdbc-6790b3d5a608
relation.isOrgUnitOfPublication 264904d9-9e66-4169-8e11-034e537ddbca
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2011_Zhu_LongRange.pdf
Size:
2.67 MB
Format:
Adobe Portable Document Format
Description:
Collections