Dryland soil chemical properties and crop yields affected by long-term tillage and cropping sequence

Thumbnail Image
Date
2015-07-05
Authors
Sainju, Upendra
Allen, Brett
Caesar-TonThat, TheCan
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

Information on the effect of long-term management on soil nutrients and chemical properties is scanty. We examined the 30-year effect of tillage frequency and cropping sequence combination on dryland soil Olsen-P, K, Ca, Mg, Na, SO 4 –S, and Zn concentrations, pH, electrical conductivity (EC), and cation exchange capacity (CEC) at the 0–120 cm depth and annualized crop yield in the northern Great Plains, USA. Treatments were no-till continuous spring wheat (Triticum aestivum L.) (NTCW), spring till continuous spring wheat (STCW), fall and spring till continuous spring wheat (FSTCW), fall and spring till spring wheat–barley (Hordeum vulgare L., 1984–1999) followed by spring wheat–pea (Pisum sativum L., 2000–2013) (FSTW-B/P), and spring till spring wheat-fallow (STW-F, traditional system). At 0–7.5 cm, P, K, Zn, Na, and CEC were 23–60% were greater, but pH, buffer pH, and Ca were 6–31% lower in NTCW, STCW, and FSTW–B/P than STW-F. At 7.5–15 cm, K was 23–52% greater, but pH, buffer pH, and Mg were 3–21% lower in NTCW, STCW, FSTCW, FSTW–B/P than STW-F. At 60–120 cm, soil chemical properties varied with treatments. Annualized crop yield was 23–30% lower in STW-F than the other treatments. Continuous N fertilization probably reduced soil pH, Ca, and Mg, but greater crop residue returned to the soil increased P, K, Na, Zn, and CEC in NTCW and STCW compared to STW-F. Reduced tillage with continuous cropping may be adopted for maintaining long-term soil fertility and crop yields compared with the traditional system.

Series Number
Journal Issue
Is Version Of
Versions
Series
Academic or Administrative Unit
Type
article
Comments

This article was published in SpringerPlus 4 (2015): 320, doi:10.1186/s40064-015-1122-4.

Rights Statement
Copyright
Funding
DOI
Supplemental Resources
Collections