Inverse Design of Single- and Multi-Rotor Horizontal Axis Wind Turbine Blades using Computational Fluid Dynamics

Supplemental Files
Date
2017-01-01
Authors
Moghadassian, Behnam
Sharma, Anupam
Sharma, Anupam
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Aerospace Engineering
Organizational Unit
Journal Issue
Series
Department
Aerospace Engineering
Abstract

A method for inverse design of horizontal axis wind turbine (HAWT) is presented in this paper. The direct solver for aerodynamic analysis solves the Reynolds Averaged Navier Stokes (RANS) equations, where the effect of the turbine rotor is modeled as momentum sources using the actuator disk model (ADM).The inverse problem is posed as follows: for a given selection of airfoils, the objective is to find the blade geometry (described as blade twist and chord distributions) which realizes the desired turbine aerodynamic performance at the design point; the desired performance is prescribed as angle of attack (α) and axial induction factor (a) distributions along the blade. The method is first applied for conventional, single-rotor HAWTs and then extended to multi-rotor, specifically dual-rotor wind turbines.

Comments

This is a manuscript of a proceeding published as Behnam Moghadassian and Anupam Sharma. (2017) "Inverse Design of Single- and Multi-Rotor Horizontal Axis Wind Turbine Blades using Computational Fluid Dynamics", 35th Wind Energy Symposium, AIAA SciTech Forum. (AIAA 2017-1848). doi: 10.2514/6.2017-1848. Posted with permission.

Description
Keywords
Citation
DOI