Age and Staphylococcus aureus Inoculation Route Differentially Alter Metabolic Potential and Immune Cell Populations in Laying Hens

dc.contributor.author Fries-Craft, Krysten
dc.contributor.author Meyer, Meaghan M
dc.contributor.author Sato, Yuko
dc.contributor.author El-Gazzar, Mohamed
dc.contributor.author Bobeck, Elizabeth A.
dc.contributor.department Department of Animal Science
dc.contributor.department Veterinary Diagnostic and Production Animal Medicine
dc.date.accessioned 2022-02-09T14:39:16Z
dc.date.available 2022-02-09T14:39:16Z
dc.date.issued 2021-03
dc.description.abstract In 2018 and 2019, Staphylococcus aureus was isolated from multiple post-molt commercial laying hens with unusually high mortality. A challenge study was conducted to elucidate the role of S. aureus in this disease outbreak and the work herein represents the assessment of immunological responses in laying hens experimentally infected with S. aureus isolates from these cases. A total of 200 laying hens at 22 or 96 weeks of age (100/ age group) were assigned to 1 of 4 experimental inoculation groups (negative control, oral gavage, subcutaneous injection, or intravenous injection) after a 72 h acclimation period. Blood samples were taken prior to inoculation (baseline), 6 h post-inoculation (pi), 24 hpi, 3 dpi, and 7 dpi. Additional spleen samples to further assess systemic immunity were taken at baseline, 3 and 8 dpi. Metabolic phenotypes of peripheral blood mononuclear cells (PBMC) were isolated and assessed by Seahorse metabolic assay. Immune cell profiles in the spleen and PBMC were assessed by multicolor flow cytometry. At baseline, 96-week-old laying hens had 26.7% fewer PBMC-derived T cells compared to 22-week-old birds. Older hens had 28.9% increased helper T cell (TH) populations and 60.5% reduced γδ T cells (P = 0.03 and < 0.0001) which may contribute to variable clinical responses between age groups; however, no age-related differences in metabolic potential were observed. Metabolic outcomes showed that birds remained stressed from transport and re-housing past a 72 h acclimation period and through 24 h- 3 days post-inoculation. Inoculation with S. aureus generally reduced oxidative and glycolytic potentials compared to the control, with the greatest reductions observed in birds inoculated by intravenous injection (P < 0.05). Overall CD3+ T cell populations showed significant reductions in the intravenous group compared to other inoculation routes from 24 hpi to 7 dpi (23.6–39.0%; P ≤ 0.0001). These results suggest that age-related baseline differences in T cell populations and changes to T cell subpopulations and other immune cells due to inoculation route may have an additive effect on S. aureus- induced reductions in metabolic potential; however, further research linking metabolic potential and immune cell profiles is needed.
dc.description.comments This article is published as Fries-Craft K, Meyer MM, Sato Y, El-Gazzar M and Bobeck EA (2021) Age and Staphylococcus aureus Inoculation Route Differentially Alter Metabolic Potential and Immune Cell Populations in Laying Hens. Front. Vet. Sci. 8:653129. doi: 10.3389/fvets.2021.653129. Posted with permission. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/6wBlBqmr
dc.language.iso en
dc.publisher © 2021 Fries-Craft, Meyer, Sato, El-Gazzar and Bobeck
dc.source.uri https://doi.org/10.3389/fvets.2021.653129 *
dc.subject.disciplines DegreeDisciplines::Life Sciences::Animal Sciences
dc.subject.disciplines DegreeDisciplines::Life Sciences::Animal Sciences::Poultry or Avian Science
dc.subject.disciplines DegreeDisciplines::Life Sciences::Physiology
dc.subject.keywords poultry
dc.subject.keywords Staphylococcus aureus
dc.subject.keywords immunity
dc.subject.keywords flow cytometry
dc.subject.keywords Seahorse metabolic assay
dc.title Age and Staphylococcus aureus Inoculation Route Differentially Alter Metabolic Potential and Immune Cell Populations in Laying Hens
dc.type article
dspace.entity.type Publication
relation.isAuthorOfPublication 1914e5d6-c767-494e-8228-448fa7aa5672
relation.isOrgUnitOfPublication 85ecce08-311a-441b-9c4d-ee2a3569506f
relation.isOrgUnitOfPublication 5ab07352-4171-4f53-bbd7-ac5d616f7aa8
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2021-Bobeck-AgeStaphylococcus.pdf
Size:
8.3 MB
Format:
Adobe Portable Document Format
Description:
Collections