Laurent Series Obtained by Long Division
dc.contributor.author | Abian, A. | |
dc.contributor.author | Hogben, Leslie | |
dc.contributor.author | Johnston, Elgin | |
dc.contributor.department | Mathematics | |
dc.date | 2018-02-18T06:50:51.000 | |
dc.date.accessioned | 2020-06-30T05:59:33Z | |
dc.date.available | 2020-06-30T05:59:33Z | |
dc.date.copyright | Tue Jan 01 00:00:00 UTC 1985 | |
dc.date.issued | 1985 | |
dc.description.abstract | <p>Let r<sub>1,...,</sub>r<sub>n </sub>be the n root-moduli of the polynomial az<sup>n</sup>+bz<sup>m</sup>+c, where n>m>0 are integers and a,b,c are nonzero complex numbers. We give a necessary and sufficient condition in order that the long division of <strong><sup>.</sup></strong>1 by bz<sup>m</sup>+az<sup>n</sup>+c (where contrary to traditional long division, the divisor is ordered neither in the ascending nor in the descending powers of z) yield the Laurent series of 1/(az<sup>n</sup>+bz<sup>m</sup>+c) valid in the annulus r<sub>k</sub>< IzI k+1 </sub>for some root-modulus r<sub>k</sub>. Our method gives an effective way of obtaining Laurent series of 1/(az<sup>n</sup>+bz<sup>m</sup>+c) in nontrivial annulus requiring no information about the roots of az<sup>n</sup>+bz<sup>m</sup>+c. Our method can be generalized to yield Laurent series of P(z)/Q(z) in all pertinent nontrivial annuli, where P(z) and Q(z) are any finite (or infinite) polynomials. The generalization consists of (possible premultiplication of the numerator and the denominator of P(z)/Q(z) by a suitable polynomial) choosing as the leading term for long division a suitable split of a suitable term in the (possibly new) denominator.</p> | |
dc.description.comments | <p>This is an article from <em>Radovi Matematički </em>1 (1985): 79.</p> | |
dc.format.mimetype | application/pdf | |
dc.identifier | archive/lib.dr.iastate.edu/math_pubs/102/ | |
dc.identifier.articleid | 1106 | |
dc.identifier.contextkey | 9918652 | |
dc.identifier.s3bucket | isulib-bepress-aws-west | |
dc.identifier.submissionpath | math_pubs/102 | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/54483 | |
dc.language.iso | en | |
dc.source.bitstream | archive/lib.dr.iastate.edu/math_pubs/102/1985_Hogben_LaurentSeries.pdf|||Fri Jan 14 18:15:57 UTC 2022 | |
dc.subject.disciplines | Algebra | |
dc.subject.keywords | Laurent series | |
dc.subject.keywords | long division | |
dc.title | Laurent Series Obtained by Long Division | |
dc.type | article | |
dc.type.genre | article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 0131698a-00df-41ad-8919-35fb630b282b | |
relation.isOrgUnitOfPublication | 82295b2b-0f85-4929-9659-075c93e82c48 |
File
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 1985_Hogben_LaurentSeries.pdf
- Size:
- 5.01 MB
- Format:
- Adobe Portable Document Format
- Description: