Blind polychromatic X-ray CT reconstruction from Poisson measurements

dc.contributor.author Gu, Renliang
dc.contributor.author Dogandžić, Aleksandar
dc.contributor.department Department of Electrical and Computer Engineering
dc.date 2018-05-25T19:22:01.000
dc.date.accessioned 2020-06-30T02:01:20Z
dc.date.available 2020-06-30T02:01:20Z
dc.date.copyright Fri Jan 01 00:00:00 UTC 2016
dc.date.embargo 2016-02-10
dc.date.issued 2016-01-01
dc.description.abstract <p>We develop a sparse image reconstruction method for Poisson distributed polychromatic X-ray computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. We employ our mass-attenuation spectrum parameterization of the noiseless measurements for single-material objects and express the mass-attenuation spectrum as a linear combination of B-spline basis functions of order one. A block coordinate descent algorithm is developed for constrained minimization of a penalized Poisson negative log-likelihood (NLL) cost function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and nonnegativity and sparsity of the density-map image; the image sparsity is imposed using a convex total-variation (TV) norm penalty term. This algorithm alternates between a Nesterov’s proximal-gradient (NPG) step for estimating the density-map image and a limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (LBFGS- B) step for estimating the incident-spectrum parameters. We establish conditions for biconvexity of the penalized NLL objective function, which, if satisfied, ensures monotonicity of the NPG-BFGS iteration. We also show that the penalized NLL objective satisfies the Kurdyka-Łojasiewicz property, which is important for establishing local convergence of block-coordinate descent schemes in biconvex optimization problems. Simulation examples demonstrate the performance of the proposed scheme.</p>
dc.description.comments <p>This is the accepted manuscript of a proceeding from the 41st IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2016), Paper BISP-P4.8, March 20-25, 2016, Shanghai, China. DOI: <a href="http://dx.doi.org/109/ICASSP.2016.7471805" target="_blank">109/ICASSP.2016.7471805</a>. Posted with permission.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/ece_conf/10/
dc.identifier.articleid 1009
dc.identifier.contextkey 8122862
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath ece_conf/10
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/20830
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/ece_conf/10/2016_DogandzicA_BlindPolychromatic.pdf|||Fri Jan 14 18:07:18 UTC 2022
dc.source.uri 10.1109/ICASSP.2016.7471805
dc.subject.disciplines Biomedical
dc.subject.disciplines Electrical and Computer Engineering
dc.subject.keywords polychromatic X-ray CT
dc.subject.keywords beam hardening
dc.subject.keywords computed tomography
dc.subject.keywords sparse signal reconstruction
dc.title Blind polychromatic X-ray CT reconstruction from Poisson measurements
dc.type article
dc.type.genre conference
dspace.entity.type Publication
relation.isAuthorOfPublication c910f7d3-c386-4c37-8143-4e653a539aa9
relation.isOrgUnitOfPublication a75a044c-d11e-44cd-af4f-dab1d83339ff
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2016_DogandzicA_BlindPolychromatic.pdf
Size:
998.77 KB
Format:
Adobe Portable Document Format
Description: