Blind polychromatic X-ray CT reconstruction from Poisson measurements
dc.contributor.author | Gu, Renliang | |
dc.contributor.author | Dogandžić, Aleksandar | |
dc.contributor.department | Department of Electrical and Computer Engineering | |
dc.date | 2018-05-25T19:22:01.000 | |
dc.date.accessioned | 2020-06-30T02:01:20Z | |
dc.date.available | 2020-06-30T02:01:20Z | |
dc.date.copyright | Fri Jan 01 00:00:00 UTC 2016 | |
dc.date.embargo | 2016-02-10 | |
dc.date.issued | 2016-01-01 | |
dc.description.abstract | <p>We develop a sparse image reconstruction method for Poisson distributed polychromatic X-ray computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. We employ our mass-attenuation spectrum parameterization of the noiseless measurements for single-material objects and express the mass-attenuation spectrum as a linear combination of B-spline basis functions of order one. A block coordinate descent algorithm is developed for constrained minimization of a penalized Poisson negative log-likelihood (NLL) cost function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and nonnegativity and sparsity of the density-map image; the image sparsity is imposed using a convex total-variation (TV) norm penalty term. This algorithm alternates between a Nesterov’s proximal-gradient (NPG) step for estimating the density-map image and a limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (LBFGS- B) step for estimating the incident-spectrum parameters. We establish conditions for biconvexity of the penalized NLL objective function, which, if satisfied, ensures monotonicity of the NPG-BFGS iteration. We also show that the penalized NLL objective satisfies the Kurdyka-Łojasiewicz property, which is important for establishing local convergence of block-coordinate descent schemes in biconvex optimization problems. Simulation examples demonstrate the performance of the proposed scheme.</p> | |
dc.description.comments | <p>This is the accepted manuscript of a proceeding from the 41st IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2016), Paper BISP-P4.8, March 20-25, 2016, Shanghai, China. DOI: <a href="http://dx.doi.org/109/ICASSP.2016.7471805" target="_blank">109/ICASSP.2016.7471805</a>. Posted with permission.</p> | |
dc.format.mimetype | application/pdf | |
dc.identifier | archive/lib.dr.iastate.edu/ece_conf/10/ | |
dc.identifier.articleid | 1009 | |
dc.identifier.contextkey | 8122862 | |
dc.identifier.s3bucket | isulib-bepress-aws-west | |
dc.identifier.submissionpath | ece_conf/10 | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/20830 | |
dc.language.iso | en | |
dc.source.bitstream | archive/lib.dr.iastate.edu/ece_conf/10/2016_DogandzicA_BlindPolychromatic.pdf|||Fri Jan 14 18:07:18 UTC 2022 | |
dc.source.uri | 10.1109/ICASSP.2016.7471805 | |
dc.subject.disciplines | Biomedical | |
dc.subject.disciplines | Electrical and Computer Engineering | |
dc.subject.keywords | polychromatic X-ray CT | |
dc.subject.keywords | beam hardening | |
dc.subject.keywords | computed tomography | |
dc.subject.keywords | sparse signal reconstruction | |
dc.title | Blind polychromatic X-ray CT reconstruction from Poisson measurements | |
dc.type | article | |
dc.type.genre | conference | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | c910f7d3-c386-4c37-8143-4e653a539aa9 | |
relation.isOrgUnitOfPublication | a75a044c-d11e-44cd-af4f-dab1d83339ff |
File
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 2016_DogandzicA_BlindPolychromatic.pdf
- Size:
- 998.77 KB
- Format:
- Adobe Portable Document Format
- Description: