Electron mobility in nanocrystalline silicon devices
dc.contributor.author | Stieler, Daniel | |
dc.contributor.author | Dalal, Vikram | |
dc.contributor.author | Muthukrishnan, Kamal | |
dc.contributor.author | Noack, Max | |
dc.contributor.author | Schares, Eric | |
dc.contributor.department | Electrical and Computer Engineering | |
dc.date | 2018-02-18T22:03:26.000 | |
dc.date.accessioned | 2020-06-30T02:02:14Z | |
dc.date.available | 2020-06-30T02:02:14Z | |
dc.date.copyright | Sun Jan 01 00:00:00 UTC 2006 | |
dc.date.issued | 2006-01-01 | |
dc.description.abstract | <p>Electron mobility in the growth direction was measured using space charge limited current techniques in device-type <em>nin</em> structure nanocrystalline Si:H and nanocrystalline Ge:H structures. The films were grown on stainless steel foil using either hot wire or remote plasma enhanced chemical vapor deposition techniques. Grain size and crystallinity were measured using x ray and Raman spectroscopy. The size of grains in films was adjusted by changing the deposition conditions. It was found that large ⟨220⟩ grain sizes (∼56nm)" role="presentation" style="display: inline; line-height: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px 2px 0px 0px; margin: 0px; position: relative;">(∼56nm)(∼56nm) could be obtained using the hot wire deposition technique, and the conductivity mobility at room temperature was measured to be 5.4cm2∕Vs" role="presentation" style="display: inline; line-height: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px 2px 0px 0px; margin: 0px; position: relative;">5.4cm2/Vs5.4cm2∕Vs in films with such large grains. The plasma-grown films had smaller grains and smaller mobilities. The mobility was found to increase with increasing grain size and with increasing temperature.</p> | |
dc.description.comments | <p>This article is from <em>Journal of Applied Physics</em> 100 (2006): 036106, doi:<a href="http://dx.doi.org/10.1063/1.2234545">10.1063/1.2234545</a>.</p> | |
dc.format.mimetype | application/pdf | |
dc.identifier | archive/lib.dr.iastate.edu/ece_pubs/136/ | |
dc.identifier.articleid | 1136 | |
dc.identifier.contextkey | 10661568 | |
dc.identifier.s3bucket | isulib-bepress-aws-west | |
dc.identifier.submissionpath | ece_pubs/136 | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/20957 | |
dc.language.iso | en | |
dc.source.bitstream | archive/lib.dr.iastate.edu/ece_pubs/136/2006_Dalal_ElectronMobility.pdf|||Fri Jan 14 19:56:37 UTC 2022 | |
dc.source.uri | 10.1063/1.2234545 | |
dc.subject.disciplines | Electrical and Computer Engineering | |
dc.subject.keywords | Carrier mobility | |
dc.subject.keywords | Nanocrystalline materials | |
dc.subject.keywords | Thin films | |
dc.subject.keywords | Electron mobility | |
dc.subject.keywords | Thin film growth | |
dc.title | Electron mobility in nanocrystalline silicon devices | |
dc.type | article | |
dc.type.genre | article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 00d753d2-8814-4b5e-a32d-bd6564912f55 | |
relation.isOrgUnitOfPublication | a75a044c-d11e-44cd-af4f-dab1d83339ff |
File
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 2006_Dalal_ElectronMobility.pdf
- Size:
- 384.33 KB
- Format:
- Adobe Portable Document Format
- Description: