Electron mobility in nanocrystalline silicon devices

dc.contributor.author Stieler, Daniel
dc.contributor.author Dalal, Vikram
dc.contributor.author Muthukrishnan, Kamal
dc.contributor.author Noack, Max
dc.contributor.author Schares, Eric
dc.contributor.department Electrical and Computer Engineering
dc.date 2018-02-18T22:03:26.000
dc.date.accessioned 2020-06-30T02:02:14Z
dc.date.available 2020-06-30T02:02:14Z
dc.date.copyright Sun Jan 01 00:00:00 UTC 2006
dc.date.issued 2006-01-01
dc.description.abstract <p>Electron mobility in the growth direction was measured using space charge limited current techniques in device-type <em>nin</em> structure nanocrystalline Si:H and nanocrystalline Ge:H structures. The films were grown on stainless steel foil using either hot wire or remote plasma enhanced chemical vapor deposition techniques. Grain size and crystallinity were measured using x ray and Raman spectroscopy. The size of grains in films was adjusted by changing the deposition conditions. It was found that large ⟨220⟩ grain sizes (∼56nm)" role="presentation" style="display: inline; line-height: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px 2px 0px 0px; margin: 0px; position: relative;">(∼56nm)(∼56nm) could be obtained using the hot wire deposition technique, and the conductivity mobility at room temperature was measured to be 5.4cm2∕Vs" role="presentation" style="display: inline; line-height: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px 2px 0px 0px; margin: 0px; position: relative;">5.4cm2/Vs5.4cm2∕Vs in films with such large grains. The plasma-grown films had smaller grains and smaller mobilities. The mobility was found to increase with increasing grain size and with increasing temperature.</p>
dc.description.comments <p>This article is from <em>Journal of Applied Physics</em> 100 (2006): 036106, doi:<a href="http://dx.doi.org/10.1063/1.2234545">10.1063/1.2234545</a>.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/ece_pubs/136/
dc.identifier.articleid 1136
dc.identifier.contextkey 10661568
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath ece_pubs/136
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/20957
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/ece_pubs/136/2006_Dalal_ElectronMobility.pdf|||Fri Jan 14 19:56:37 UTC 2022
dc.source.uri 10.1063/1.2234545
dc.subject.disciplines Electrical and Computer Engineering
dc.subject.keywords Carrier mobility
dc.subject.keywords Nanocrystalline materials
dc.subject.keywords Thin films
dc.subject.keywords Electron mobility
dc.subject.keywords Thin film growth
dc.title Electron mobility in nanocrystalline silicon devices
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication 00d753d2-8814-4b5e-a32d-bd6564912f55
relation.isOrgUnitOfPublication a75a044c-d11e-44cd-af4f-dab1d83339ff
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2006_Dalal_ElectronMobility.pdf
Size:
384.33 KB
Format:
Adobe Portable Document Format
Description:
Collections