Minimum rank with zero diagonal Grood, Cheryl Harmse, Johannes Hogben, Leslie Hogben, Leslie Hunter, Thomas Jacob, Bonnie Klimas, Andrew McCathern, Sharon
dc.contributor.department Electrical and Computer Engineering
dc.contributor.department Mathematics 2020-07-24T04:06:12.000 2021-02-26T02:54:02Z 2021-02-26T02:54:02Z Wed Jan 01 00:00:00 UTC 2014 2014-06-01
dc.description.abstract <p>Associated with a simple graph G is a family of real, symmetric zero diagonal matrices with the same nonzero pattern as the adjacency matrix of G. The minimum of the ranks of the matrices in this family is denoted mr(0)(G). We characterize all connected graphs G with extreme minimum zero-diagonal rank: a connected graph G has mr(0)(G)</p>
dc.description.comments <p>This article is published as Grood, Cheryl, Johannes Harmse, Leslie Hogben, Thomas Hunter, Bonnie Jacob, Andrew Klimas, and Sharon McCathern. "Minimum rank with zero diagonal." <em>The Electronic Journal of Linear Algebra</em> 27 (2014): 458-477. DOI: <a href="" target="_blank">10.13001/1081-3810.1630</a>. Posted with permission.</p>
dc.format.mimetype application/pdf
dc.identifier archive/
dc.identifier.articleid 1241
dc.identifier.contextkey 18631414
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath math_pubs/230
dc.language.iso en
dc.source.bitstream archive/|||Fri Jan 14 22:47:19 UTC 2022
dc.source.uri 10.13001/1081-3810.1630
dc.subject.disciplines Algebra
dc.subject.keywords Zero-Diagonal
dc.subject.keywords Minimum rank
dc.subject.keywords Maximum nullity
dc.subject.keywords Zero forcing number
dc.subject.keywords Perfect [1
dc.subject.keywords 2]-factor
dc.subject.keywords Spanning generalized cycle
dc.subject.keywords Matrix
dc.subject.keywords Graph
dc.title Minimum rank with zero diagonal
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication 0131698a-00df-41ad-8919-35fb630b282b
relation.isOrgUnitOfPublication a75a044c-d11e-44cd-af4f-dab1d83339ff
relation.isOrgUnitOfPublication 82295b2b-0f85-4929-9659-075c93e82c48
Original bundle
Now showing 1 - 1 of 1
266.1 KB
Adobe Portable Document Format