Minimum rank with zero diagonal
dc.contributor.author | Grood, Cheryl | |
dc.contributor.author | Harmse, Johannes | |
dc.contributor.author | Hogben, Leslie | |
dc.contributor.author | Hunter, Thomas | |
dc.contributor.author | Jacob, Bonnie | |
dc.contributor.author | Klimas, Andrew | |
dc.contributor.author | McCathern, Sharon | |
dc.contributor.department | Department of Electrical and Computer Engineering | |
dc.contributor.department | Mathematics | |
dc.date | 2020-07-24T04:06:12.000 | |
dc.date.accessioned | 2021-02-26T02:54:02Z | |
dc.date.available | 2021-02-26T02:54:02Z | |
dc.date.copyright | Wed Jan 01 00:00:00 UTC 2014 | |
dc.date.issued | 2014-06-01 | |
dc.description.abstract | <p>Associated with a simple graph G is a family of real, symmetric zero diagonal matrices with the same nonzero pattern as the adjacency matrix of G. The minimum of the ranks of the matrices in this family is denoted mr(0)(G). We characterize all connected graphs G with extreme minimum zero-diagonal rank: a connected graph G has mr(0)(G)</p> | |
dc.description.comments | <p>This article is published as Grood, Cheryl, Johannes Harmse, Leslie Hogben, Thomas Hunter, Bonnie Jacob, Andrew Klimas, and Sharon McCathern. "Minimum rank with zero diagonal." <em>The Electronic Journal of Linear Algebra</em> 27 (2014): 458-477. DOI: <a href="https://doi.org/10.13001/1081-3810.1630" target="_blank">10.13001/1081-3810.1630</a>. Posted with permission.</p> | |
dc.format.mimetype | application/pdf | |
dc.identifier | archive/lib.dr.iastate.edu/math_pubs/230/ | |
dc.identifier.articleid | 1241 | |
dc.identifier.contextkey | 18631414 | |
dc.identifier.s3bucket | isulib-bepress-aws-west | |
dc.identifier.submissionpath | math_pubs/230 | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/96625 | |
dc.language.iso | en | |
dc.source.bitstream | archive/lib.dr.iastate.edu/math_pubs/230/2014_HogbenLeslie_MinimumRankZero.pdf|||Fri Jan 14 22:47:19 UTC 2022 | |
dc.source.uri | 10.13001/1081-3810.1630 | |
dc.subject.disciplines | Algebra | |
dc.subject.keywords | Zero-Diagonal | |
dc.subject.keywords | Minimum rank | |
dc.subject.keywords | Maximum nullity | |
dc.subject.keywords | Zero forcing number | |
dc.subject.keywords | Perfect [1 | |
dc.subject.keywords | 2]-factor | |
dc.subject.keywords | Spanning generalized cycle | |
dc.subject.keywords | Matrix | |
dc.subject.keywords | Graph | |
dc.title | Minimum rank with zero diagonal | |
dc.type | article | |
dc.type.genre | article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 0131698a-00df-41ad-8919-35fb630b282b | |
relation.isOrgUnitOfPublication | a75a044c-d11e-44cd-af4f-dab1d83339ff | |
relation.isOrgUnitOfPublication | 82295b2b-0f85-4929-9659-075c93e82c48 |
File
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 2014_HogbenLeslie_MinimumRankZero.pdf
- Size:
- 266.1 KB
- Format:
- Adobe Portable Document Format
- Description: