Propagation of Uncertainty with the Koopman Operator

dc.contributor.author Servadio, Simone
dc.contributor.author Lavezzi, Giovanni
dc.contributor.author Hofmann, Christian
dc.contributor.author Wu, Di
dc.contributor.author Linares, Richard
dc.contributor.department Department of Aerospace Engineering
dc.date.accessioned 2024-09-12T21:01:06Z
dc.date.available 2024-09-12T21:01:06Z
dc.date.issued 2024-07-29
dc.description.abstract This paper proposes a new method to propagate uncertainties undergoing nonlinear dynamics using the Koopman Operator (KO). Probability density functions are propagated directly using the Koopman approximation of the solution flow of the system, where the dynamics have been projected on a well-defined set of basis functions. The prediction technique is derived following both the analytical (Galerkin) and numerical (EDMD) derivation of the KO, and a least square reduction algorithm assures the recursivity of the proposed methodology.
dc.description.comments This is a preprint from Servadio, Simone, Giovanni Lavezzi, Christian Hofmann, Di Wu, and Richard Linares. "Propagation of Uncertainty with the Koopman Operator." arXiv preprint arXiv:2407.20170 (2024). doi: https://doi.org/10.48550/arXiv.2407.20170.
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/arY4K7Av
dc.language.iso en
dc.rights https://creativecommons.org/publicdomain/zero/1.0/
dc.source.uri https://doi.org/10.48550/arXiv.2407.20170 *
dc.subject.disciplines DegreeDisciplines::Engineering::Aerospace Engineering::Navigation, Guidance, Control and Dynamics
dc.subject.disciplines DegreeDisciplines::Physical Sciences and Mathematics::Applied Mathematics::Non-linear Dynamics
dc.subject.keywords Koopman Operator
dc.subject.keywords Probability Density Function
dc.subject.keywords Uncertainty Propagation
dc.subject.keywords Uncertainty Quantification
dc.title Propagation of Uncertainty with the Koopman Operator
dc.type Preprint
dspace.entity.type Publication
relation.isAuthorOfPublication e69ee2e8-b140-490d-9750-13e2add734e2
relation.isOrgUnitOfPublication 047b23ca-7bd7-4194-b084-c4181d33d95d
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2024-Servadio-PropagationOfUncertainty.pdf
Size:
1.13 MB
Format:
Adobe Portable Document Format
Description:
Collections