Electrochemical impedance spectroscopy analysis of corrosion product layer formation on pipeline steel

dc.contributor.author Mishra, Pratyush
dc.contributor.author Yavas, Denizhan
dc.contributor.author Bastawros, Ashraf
dc.contributor.author Hebert, Kurt
dc.contributor.author Bastawros, Ashraf
dc.contributor.department Aerospace Engineering
dc.contributor.department Ames National Laboratory
dc.contributor.department Mechanical Engineering
dc.contributor.department Materials Science and Engineering
dc.contributor.department Chemical and Biological Engineering
dc.date 2020-04-21T17:39:51.000
dc.date.accessioned 2020-06-29T22:45:44Z
dc.date.available 2020-06-29T22:45:44Z
dc.date.copyright Wed Jan 01 00:00:00 UTC 2020
dc.date.embargo 2022-04-17
dc.date.issued 2020-04-17
dc.description.abstract <p>Pipeline steels exhibit intergranular corrosion (IGC) and stress corrosion cracking at active dissolution potentials in carbonate-bicarbonate solutions. The evolution of electrochemical behavior of API X70 pipeline steel during active dissolution in 1 M NaHCO3 was investigated by electrochemical impedance spectroscopy (EIS). Electrochemical modeling of EIS revealed that the metal rate is limited by slow diffusion of CO3−2 ions through a porous precipitated corrosion product layer to the steel surface. Further, the porosity of the carbonate layer decreases over time as its thickness increases, both factors contributing to a strongly suppressed corrosion rate due to impeded CO3−2 diffusion. Decreasing steel corrosion rates with time in carbonate-bicarbonate solutions can be understood on this basis. Growth of the carbonate layer at the steel-carbonate interface intensifies tensile wedging stress in corroded grain boundaries, thereby facilitating intergranular crack initiation.</p>
dc.description.comments <p>This is a manuscript of an article published as Mishra, Pratyush, Denizhan Yavas, Ashraf F. Bastawros, and Kurt R. Hebert. "Electrochemical impedance spectroscopy analysis of corrosion product layer formation on pipeline steel." <em>Electrochimica Acta</em> (2020): 136232. DOI: <a href="https://doi.org/10.1016/j.electacta.2020.136232" target="_blank">10.1016/j.electacta.2020.136232</a>. Posted with permission.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/aere_pubs/164/
dc.identifier.articleid 1165
dc.identifier.contextkey 17477005
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath aere_pubs/164
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/2011
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/aere_pubs/164/2020_BastarwosAshraf_ElectrochemicalImpedance.pdf|||Fri Jan 14 20:59:49 UTC 2022
dc.source.uri 10.1016/j.electacta.2020.136232
dc.subject.disciplines Chemical Engineering
dc.subject.disciplines Mechanics of Materials
dc.subject.disciplines Metallurgy
dc.subject.keywords Pipeline steel
dc.subject.keywords Intergranular corrosion
dc.subject.keywords Stress corrosion cracking
dc.subject.keywords Electrochemical impedance spectroscopy
dc.subject.keywords Mathematical model
dc.title Electrochemical impedance spectroscopy analysis of corrosion product layer formation on pipeline steel
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication 5dc5d008-4c85-41c9-b47c-7c55b44ca802
relation.isOrgUnitOfPublication 047b23ca-7bd7-4194-b084-c4181d33d95d
relation.isOrgUnitOfPublication 25913818-6714-4be5-89a6-f70c8facdf7e
relation.isOrgUnitOfPublication 6d38ab0f-8cc2-4ad3-90b1-67a60c5a6f59
relation.isOrgUnitOfPublication bf9f7e3e-25bd-44d3-b49c-ed98372dee5e
relation.isOrgUnitOfPublication 86545861-382c-4c15-8c52-eb8e9afe6b75
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2020_BastarwosAshraf_ElectrochemicalImpedance.pdf
Size:
14.63 MB
Format:
Adobe Portable Document Format
Description:
Collections