Emissions from Swine Manure Treated with Current Products for Mitigation of Odors and Reduction of NH3, H2S, VOC, and GHG Emissions

Thumbnail Image
Date
2020-06-18
Authors
Koziel, Jacek
Banik, Chumki
Ma, Hantian
Lee, Myeongseong
Meiirkhanuly, Zhanibek
Andersen, Daniel
Białowiec, Andrzej
Parker, David
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Koziel, Jacek
Professor Emeritus
Person
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Food Science and Human NutritionCivil, Construction and Environmental EngineeringAgricultural and Biosystems EngineeringToxicology
Abstract

Odor and gaseous emissions from the swine industry are of concern for the wellbeing of humans and livestock. Additives applied to the swine manure surface are popular, marketed products to solve this problem and relatively inexpensive and easy for farmers to use. There is no scientific data evaluating the effectiveness of many of these products. We evaluated 12 manure additive products that are currently being marketed on their effectiveness in mitigating odor and gaseous emissions from swine manure. We used a pilot-scale system simulating the storage of swine manure with a controlled ventilation of headspace and periodic addition of manure. This dataset contains measured concentrations and estimated emissions of target gases in manure headspace above treated and untreated swine manure. These include ammonia (NH3), hydrogen sulfide (H2S), greenhouse gases (CO2, CH4, and N2O), volatile organic compounds (VOC), and odor. The experiment to test each manure additive product lasted for two months; the measurements of NH3 and H2S were completed twice a week; others were conducted weekly. The manure for each test was collected from three different farms in central Iowa to provide the necessary variety in stored swine manure properties. This dataset is useful for further analyses of gaseous emissions from swine manure under simulated storage conditions and for performance comparison of marketed products for the mitigation of gaseous emissions. Ultimately, swine farmers, the regulatory community, and the public need to have scientific data informing decisions about the usefulness of manure additives.

Comments

This article is published as Chen, Baitong, Jacek A. Koziel, Chumki Banik, Hantian Ma, Myeongseong Lee, Jisoo Wi, Zhanibek Meiirkhanuly, Daniel S. Andersen, Andrzej Białowiec, and David B. Parker. "Emissions from Swine Manure Treated with Current Products for Mitigation of Odors and Reduction of NH3, H2S, VOC, and GHG Emissions." Data 5, no. 2 (2020): 54. DOI: 10.3390/data5020054.

Description
Keywords
Citation
DOI
Copyright
Collections