The Inverse Eigenvalue Problem of a Graph
Date
Authors
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Inverse eigenvalue problems appear in various contexts throughout mathematics and engineering, and refer to determining all possible lists of eigenvalues (spectra) for matrices fitting some description. The inverse eigenvalue problem of a graph refers to determining the possible spectra of real symmetric matrices whose pattern of nonzero off-diagonal entries is described by the edges of a given graph (precise definitions of this and other terms are given in the next paragraph). This problem and related variants have been of interest for many years and were originally approached through the study of ordered multiplicity lists.
Series Number
Journal Issue
Is Version Of
Versions
Series
Academic or Administrative Unit
Type
Comments
This report resulted from the Banff International Research Station Focused Research Groups and is published as Barrett, Wayne, Steve Butler, Shaun Fallat, H. Tracy Hall, Leslie Hogben, Jephian CH Lin, Bryan Shader, and Michael Young. "The inverse eigenvalue problem of a graph." Banff International Research Station: The Inverse Eigenvalue Problem of a Graph, 2016. Posted with permission.