Minimax Nonparametric Classification—Part I: Rates of Convergence

Date
1998
Authors
Yang, Yuhong
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Statistics
Organizational Unit
Journal Issue
Series
Department
Statistics
Abstract

— This paper studies minimax aspects of nonparametric classification. We first study minimax estimation of the conditional probability of a class label, given the feature variable. This function, say f, is assumed to be in a general nonparametric class. We show the minimax rate of convergence under square L2 loss is determined by the massiveness of the class as measured by metric entropy. The second part of the paper studies minimax classification. The loss of interest is the difference between the probability of misclassification of a classifier and that of the Bayes decision. As is well known, an upper bound on risk for estimating f gives an upper bound on the risk for classification, but the rate is known to be suboptimal for the class of monotone functions. This suggests that one does not have to estimate f well in order to classify well. However, we show that the two problems are in fact of the same difficulty in terms of rates of convergence under a sufficient condition, which is satisfied by many function classes including Besov (Sobolev), Lipschitz, and bounded variation. This is somewhat surprising in view of a result of Devroye, Gyorfi, ¨ and Lugosi (1996).

Comments

This preprint was published as Yuhong Yang, "Minimax Nonparametric Classification - Part I: Rates of Convergence", IEEE Transactions on Information Theory (1999): 2271-2284, doi: 10.1109/18.796368.

Description
Keywords
Citation
DOI
Source
Collections