A molecular dynamics study of tilt grain boundary resistance to slip and heat transfer in nanocrystalline silicon

dc.contributor.author Chen, Xiang
dc.contributor.author Xiong, Liming
dc.contributor.author Chernatynskiy, Aleksandr
dc.contributor.author Chen, Youping
dc.contributor.department Department of Aerospace Engineering
dc.date.accessioned 2022-02-17T21:10:12Z
dc.date.available 2022-02-17T21:10:12Z
dc.date.issued 2014-12-30
dc.description.abstract We present a molecular dynamics study of grain boundary (GB) resistance to dislocation-mediated slip transfer and phonon-mediated heat transfer in nanocrystalline silicon bicrystal. Three most stable ⟨110⟩ tilt GBs in silicon are investigated. Under mechanical loading, the nucleation and growth of hexagonal-shaped shuffle dislocation loops are reproduced. The resistances of different GBs to slip transfer are quantified through their constitutive responses. Results show that the Σ3 coherent twin boundary (CTB) in silicon exhibits significantly higher resistance to dislocation motion than the Σ9 GB in glide symmetry and the Σ19 GB in mirror symmetry. The distinct GB strengths are explained by the atomistic details of the dislocation-GB interaction. Under thermal loading, based on a thermostat-induced heat pulse model, the resistances of the GBs to transient heat conduction in ballistic-diffusive regime are characterized. In contrast to the trend found in the dislocation-GB interaction in bicrystal models with different GBs, the resistances of the same three GBs to heat transfer are strikingly different. The strongest dislocation barrier Σ3 CTB is almost transparent to heat conduction, while the dislocation-permeable Σ9 and Σ19 GBs exhibit larger resistance to heat transfer. In addition, simulation results suggest that the GB thermal resistance not only depends on the GB energy but also on the detailed atomic structure along the GBs.
dc.description.comments This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Chen, Xiang, Liming Xiong, Aleksandr Chernatynskiy, and Youping Chen. "A molecular dynamics study of tilt grain boundary resistance to slip and heat transfer in nanocrystalline silicon." Journal of Applied Physics 116, no. 24 (2014): 244309., and may be found at DOI: 10.1063/1.4905248. Copyright 2014 AIP Publishing LLC. Posted with permission.
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/aw4N6qMr
dc.language.iso en_US
dc.publisher AIP Publishing LLC
dc.source.uri https://doi.org/10.1063/1.4905248 *
dc.subject.disciplines DegreeDisciplines::Engineering::Nanoscience and Nanotechnology
dc.subject.disciplines DegreeDisciplines::Physical Sciences and Mathematics::Physics::Condensed Matter Physics
dc.title A molecular dynamics study of tilt grain boundary resistance to slip and heat transfer in nanocrystalline silicon
dc.type article
dspace.entity.type Publication
relation.isAuthorOfPublication 19ad205a-f06f-45c3-a6bf-79d9d1d97a68
relation.isOrgUnitOfPublication 047b23ca-7bd7-4194-b084-c4181d33d95d
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2014-XiongLiming-MolecularDynamics.pdf
Size:
10.43 MB
Format:
Adobe Portable Document Format
Description:
Collections