Coloring count cones of planar graphs

dc.contributor.author Dvorak, Zdenek
dc.contributor.author Lidicky, Bernard
dc.contributor.department Department of Mathematics
dc.date 2019-09-13T05:10:36.000
dc.date.accessioned 2020-06-30T06:00:27Z
dc.date.available 2020-06-30T06:00:27Z
dc.date.copyright Tue Jan 01 00:00:00 UTC 2019
dc.date.issued 2019-07-10
dc.description.abstract <p>For a plane near-triangulation G with the outer face bounded by a cycle C, let n⋆G denote the function that to each 4-coloring ψ of C assigns the number of ways ψ extends to a 4-coloring of G. The block-count reducibility argument (which has been developed in connection with attempted proofs of the Four Color Theorem) is equivalent to the statement that the function n⋆G belongs to a certain cone in the space of all functions from 4-colorings of C to real numbers. We investigate the properties of this cone for |C|=5, formulate a conjecture strengthening the Four Color Theorem, and present evidence supporting this conjecture.</p>
dc.description.comments <p>This is a pre-print made available through arxiv: <a href="https://arxiv.org/abs/1907.04066">https://arxiv.org/abs/1907.04066</a>.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/math_pubs/213/
dc.identifier.articleid 1219
dc.identifier.contextkey 14928453
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath math_pubs/213
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/54605
dc.language.iso en
dc.relation.isversionof Coloring count cones of planar graphs
dc.source.bitstream archive/lib.dr.iastate.edu/math_pubs/213/2019_Lidicky_ColoringCountPreprint.pdf|||Fri Jan 14 22:36:25 UTC 2022
dc.subject.disciplines Discrete Mathematics and Combinatorics
dc.title Coloring count cones of planar graphs
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication a1d8f5ab-9124-4104-981c-8ba1e426e3ff
relation.isOrgUnitOfPublication 82295b2b-0f85-4929-9659-075c93e82c48
relation.isVersionOf bdc73581-b6bf-4ab5-9059-7399115c5b3c
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2019_Lidicky_ColoringCountPreprint.pdf
Size:
223.2 KB
Format:
Adobe Portable Document Format
Description:
Collections