Coloring count cones of planar graphs
dc.contributor.author | Dvorak, Zdenek | |
dc.contributor.author | Lidicky, Bernard | |
dc.contributor.department | Department of Mathematics | |
dc.date | 2019-09-13T05:10:36.000 | |
dc.date.accessioned | 2020-06-30T06:00:27Z | |
dc.date.available | 2020-06-30T06:00:27Z | |
dc.date.copyright | Tue Jan 01 00:00:00 UTC 2019 | |
dc.date.issued | 2019-07-10 | |
dc.description.abstract | <p>For a plane near-triangulation G with the outer face bounded by a cycle C, let n⋆G denote the function that to each 4-coloring ψ of C assigns the number of ways ψ extends to a 4-coloring of G. The block-count reducibility argument (which has been developed in connection with attempted proofs of the Four Color Theorem) is equivalent to the statement that the function n⋆G belongs to a certain cone in the space of all functions from 4-colorings of C to real numbers. We investigate the properties of this cone for |C|=5, formulate a conjecture strengthening the Four Color Theorem, and present evidence supporting this conjecture.</p> | |
dc.description.comments | <p>This is a pre-print made available through arxiv: <a href="https://arxiv.org/abs/1907.04066">https://arxiv.org/abs/1907.04066</a>.</p> | |
dc.format.mimetype | application/pdf | |
dc.identifier | archive/lib.dr.iastate.edu/math_pubs/213/ | |
dc.identifier.articleid | 1219 | |
dc.identifier.contextkey | 14928453 | |
dc.identifier.s3bucket | isulib-bepress-aws-west | |
dc.identifier.submissionpath | math_pubs/213 | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/54605 | |
dc.language.iso | en | |
dc.relation.isversionof | Coloring count cones of planar graphs | |
dc.source.bitstream | archive/lib.dr.iastate.edu/math_pubs/213/2019_Lidicky_ColoringCountPreprint.pdf|||Fri Jan 14 22:36:25 UTC 2022 | |
dc.subject.disciplines | Discrete Mathematics and Combinatorics | |
dc.title | Coloring count cones of planar graphs | |
dc.type | article | |
dc.type.genre | article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | a1d8f5ab-9124-4104-981c-8ba1e426e3ff | |
relation.isOrgUnitOfPublication | 82295b2b-0f85-4929-9659-075c93e82c48 | |
relation.isVersionOf | bdc73581-b6bf-4ab5-9059-7399115c5b3c |
File
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 2019_Lidicky_ColoringCountPreprint.pdf
- Size:
- 223.2 KB
- Format:
- Adobe Portable Document Format
- Description: