Paired bulk organic and individual amino acid δ15N analyses of bivalve shell periostracum: A paleoceanographic proxy for water source variability and nitrogen cycling processes

Thumbnail Image
Date
2019-03-27
Authors
Whitney, Nina
Johnson, Beverly
Dotsie, Philip
Luzier, Katherine
Wanamaker, Alan
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Wanamaker, Alan
Professor
Research Projects
Organizational Units
Organizational Unit
Geological and Atmospheric Sciences

The Department of Geological and Atmospheric Sciences offers majors in three areas: Geology (traditional, environmental, or hydrogeology, for work as a surveyor or in mineral exploration), Meteorology (studies in global atmosphere, weather technology, and modeling for work as a meteorologist), and Earth Sciences (interdisciplinary mixture of geology, meteorology, and other natural sciences, with option of teacher-licensure).

History
The Department of Geology and Mining was founded in 1898. In 1902 its name changed to the Department of Geology. In 1965 its name changed to the Department of Earth Science. In 1977 its name changed to the Department of Earth Sciences. In 1989 its name changed to the Department of Geological and Atmospheric Sciences.

Dates of Existence
1898-present

Historical Names

  • Department of Geology and Mining (1898-1902)
  • Department of Geology (1902-1965)
  • Department of Earth Science (1965-1977)
  • Department of Earth Sciences (1977-1989)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Geological and Atmospheric Sciences
Abstract

Developing high resolution, well-dated marine proxies of environmental, climatic, and oceanographic conditions is critical in order to advance our understanding of the ocean’s role in the global climate system. While some work has investigated bulk and compound specific stable nitrogen isotopes (δ15N) in bivalve shells as proxies for environmental variability, the small concentrations of nitrogen found in the organic matrix of the shell calcium carbonate (CaCO3) makes developing high resolution records challenging. This study investigates the potential of using the bulk and amino acid δ15N of bivalve periostracum, the protein layer on the outside of the shell, as a proxy archive of nitrogen cycling processes and water source variability.

Bulk δ15N values were measured on the periostracum, aragonitic CaCO3, and adductor muscle of Arctica islandicashells collected in the Gulf of Maine. Increased variability of isotopic values across growth lines compared to along growth lines support mechanistic reasoning based on growth processes that periostracum is recording changes in δ15N over the course of the clam’s lifetime (up to 500 years). In addition, the statistically significant relationship between periostracum δ15N and contemporaneous carbonate δ15N of the same shell (r= 0.82, p

Compound specific δ15N analyses of the periostracum of A. islandica shells were used to determine that the calculated trophic position of the clams in this study (1.4±0.4) did not change significantly between 1783 and 1997. Phenylalanine δ15N values over the last 70 years show similar trends to that of the bulk record, suggesting that changes in bulk δ15N of that time period are related to changes in baseline δ15N. Periostracum δ15N values from shells collected in the western Gulf of Maine have decreased by ∼1‰ since the mid-1920s. This trend (-0.008‰/year) is not statistically different from the trend of previously published δ15N values of deep-sea corals from the entrance to the Gulf of Maine over the same time period. This coral record has been shown to indicate a shift in water mass source to the region and therefore the similarity between the two records suggest that changes in periostracum δ15N values are reflecting broader North Atlantic hydrographic changes. Our study introduces a new, high-resolution and absolutely dated paleoceanographic proxy of baseline δ15N, presenting the opportunity for future reconstructions of aspects of nitrogen cycling and water source changes in the global oceans.

Comments

This is a manuscript of an article published as Whitney, Nina M., Beverly J. Johnson, Philip T. Dostie, Katherine Luzier, and Alan D. Wanamaker Jr. "Paired bulk organic and individual amino acid δ15N analyses of bivalve shell periostracum: A paleoceanographic proxy for water source variability and nitrogen cycling processes." Geochimica et Cosmochimica Acta (2019). doi: 10.1016/j.gca.2019.03.019. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2019
Collections