Making Kr+1-Free Graphs r-partite
dc.contributor.author | Balogh, József | |
dc.contributor.author | Clemen, Felix Christian | |
dc.contributor.author | Lidicky, Bernard | |
dc.contributor.author | Lavrov, Mikhail | |
dc.contributor.author | Pfender, Florian | |
dc.contributor.department | Department of Mathematics | |
dc.date | 2021-09-22T15:33:43.000 | |
dc.date.accessioned | 2021-11-20T02:57:15Z | |
dc.date.available | 2021-11-20T02:57:15Z | |
dc.date.copyright | Tue Jan 01 00:00:00 UTC 2019 | |
dc.date.issued | 2019-09-30 | |
dc.description.abstract | <p>The Erdos-Simonovits stability theorem states that for all epsilon > 0 there exists alpha > 0 such that if G is a Kr+1-free graph on n vertices with e(G) > ex(n, Kr+1)-alpha n2, then one can remove epsilon n2 edges from G to obtain an r-partite graph. Furedi gave a short proof that one can choose alpha = epsilon. We give a bound for the relationship of alpha and epsilon which is asymptotically sharp as epsilon right arrow 0.</p> | |
dc.description.comments | <p>This pre-print is made available through arixiv: <a href="https://arxiv.org/abs/1910.00028">https://arxiv.org/abs/1910.00028</a>.</p> | |
dc.format.mimetype | application/pdf | |
dc.identifier | archive/lib.dr.iastate.edu/math_pubs/214/ | |
dc.identifier.articleid | 1220 | |
dc.identifier.contextkey | 15504986 | |
dc.identifier.s3bucket | isulib-bepress-aws-west | |
dc.identifier.submissionpath | math_pubs/214 | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/jrl87eKr | |
dc.language.iso | en | |
dc.relation.isversionof | Making Kr+1-free graphs r-partite | |
dc.source.bitstream | archive/lib.dr.iastate.edu/math_pubs/214/2019_Lidicky_MakingFreePreprint.pdf|||Fri Jan 14 22:37:14 UTC 2022 | |
dc.subject.disciplines | Discrete Mathematics and Combinatorics | |
dc.title | Making Kr+1-Free Graphs r-partite | |
dc.type | article | |
dc.type.genre | article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | a1d8f5ab-9124-4104-981c-8ba1e426e3ff | |
relation.isOrgUnitOfPublication | 82295b2b-0f85-4929-9659-075c93e82c48 | |
relation.isVersionOf | 63a6b7ba-3f46-448e-bfe2-fd2cad2dd4f8 |
File
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 2019_Lidicky_MakingFreePreprint.pdf
- Size:
- 143.52 KB
- Format:
- Adobe Portable Document Format
- Description: