Making Kr+1-Free Graphs r-partite

dc.contributor.author Balogh, József
dc.contributor.author Clemen, Felix Christian
dc.contributor.author Lidicky, Bernard
dc.contributor.author Lavrov, Mikhail
dc.contributor.author Pfender, Florian
dc.contributor.department Department of Mathematics
dc.date 2021-09-22T15:33:43.000
dc.date.accessioned 2021-11-20T02:57:15Z
dc.date.available 2021-11-20T02:57:15Z
dc.date.copyright Tue Jan 01 00:00:00 UTC 2019
dc.date.issued 2019-09-30
dc.description.abstract <p>The Erdos-Simonovits stability theorem states that for all epsilon > 0 there exists alpha > 0 such that if G is a Kr+1-free graph on n vertices with e(G) > ex(n, Kr+1)-alpha n2, then one can remove epsilon n2 edges from G to obtain an r-partite graph. Furedi gave a short proof that one can choose alpha = epsilon. We give a bound for the relationship of alpha and epsilon which is asymptotically sharp as epsilon right arrow 0.</p>
dc.description.comments <p>This pre-print is made available through arixiv: <a href="https://arxiv.org/abs/1910.00028">https://arxiv.org/abs/1910.00028</a>.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/math_pubs/214/
dc.identifier.articleid 1220
dc.identifier.contextkey 15504986
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath math_pubs/214
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/jrl87eKr
dc.language.iso en
dc.relation.isversionof Making Kr+1-free graphs r-partite
dc.source.bitstream archive/lib.dr.iastate.edu/math_pubs/214/2019_Lidicky_MakingFreePreprint.pdf|||Fri Jan 14 22:37:14 UTC 2022
dc.subject.disciplines Discrete Mathematics and Combinatorics
dc.title Making Kr+1-Free Graphs r-partite
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication a1d8f5ab-9124-4104-981c-8ba1e426e3ff
relation.isOrgUnitOfPublication 82295b2b-0f85-4929-9659-075c93e82c48
relation.isVersionOf 63a6b7ba-3f46-448e-bfe2-fd2cad2dd4f8
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2019_Lidicky_MakingFreePreprint.pdf
Size:
143.52 KB
Format:
Adobe Portable Document Format
Description:
Collections