A high-throughput, field-based phenotyping technology for tall biomass crops

Thumbnail Image
Salas Fernandez, Maria
Bao, Yin
Schnable, Patrick
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Salas-Fernandez, Maria
Associate Professor
Tang, Lie
Research Projects
Organizational Units
Organizational Unit

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of

Recent advances in "omics" technologies have not been accompanied by equally efficient, cost-effective and accurate phenotyping methods required to dissect the genetic architecture of complex traits. Even though high-throughput phenotyping platforms have been developed for controlled environments, field-based aerial and ground technologies have only been designed and deployed for short stature crops. Therefore, we developed and tested Phenobot 1.0, an auto-steered and self-propelled field-based high-throughput phenotyping platform for tall dense canopy crops, such as sorghum (Sorghum bicolor L. Moench). Phenobot 1.0 was equipped with laterally positioned and vertically stacked stereo RGB cameras. Images collected from 307 diverse sorghum lines were reconstructed in 3D for feature extraction. User interfaces were developed and multiple algorithms were evaluated for their accuracy in estimating plant height and stem diameter. Tested feature extraction methods included: i) User-interactive Individual Plant Height Extraction based on dense stereo 3D reconstruction (UsIn-PHe); ii) Automatic Hedge-based Plant Height Extraction (Auto-PHe) based on dense stereo 3D reconstruction; iii) User-interactive Dense Stereo Matching Stem Diameter Extraction (DenS-Di); and iv) User-interactive Image Patch Stereo Matching Stem Diameter Extraction (IPaS-Di). Comparative genome-wide association analysis and ground-truth validation demonstrated that both UsIn-PHe and Auto-PHe were accurate methods to estimate plant height while Auto-PHe had the additional advantage of being a completely automated process. For stem diameter, IPaS-Di generated the most accurate estimates of this biomass-related architectural trait. In summary, our technology was proven robust to obtain ground-based high-throughput plant architecture parameters of sorghum, a tall and densely planted crop species.


This is a manuscript of an article published as Fernandez, Maria G. Salas, Yin Bao, Lie Tang, and Patrick S. Schnable. "A high-throughput, field-based phenotyping technology for tall biomass crops." Plant Physiology (2017). DOI: 10.1104/pp.17.00707. Posted with permission.

Sun Jan 01 00:00:00 UTC 2017