The Role of Plasmalogen in the Oxidative Stability of Neutral Lipids and Phospholipids

Thumbnail Image
Date
2010-02-24
Authors
Wang, Guang
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Wang, Tong
Affiliate Professor
Research Projects
Organizational Units
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Abstract

The role of ethanolamine plasmalogen extracted from bovine brain (BBEP) in maintaining oxidative stability of bulk soybean oil and liposome made with egg phospholipids (PL) was studied. In a purified soybean oil (PSO), the addition of 200 and 1000 ppm of BBEP promoted lipid oxidation at rates of 0.037 and 0.071 (all rates in ln (PV) h−1, and PV stands for peroxide value), whereas soy lecithin (SL) added in the same amount showed a trend similar to the PSO blank, which had an oxidation rate of 0.025. The PSO with BBEP was susceptible to cupric ion catalyzed oxidation, in that the oil was oxidized much more quickly than the PSO with SL and cupric ion. In commercial soybean oil (CSO) with the presence of tocopherols, SL at 1000 ppm acted synergistically as an antioxidant with the natural tocopherols, but addition of BBEP accelerated lipid oxidation, as evidenced by the oxidative stability index (OSI) test. In the egg PL liposome, the BBEP caused a fast breakdown of the lipid hydroperoxides and consequently promoted more thiobarbituric acid reactive substance (TBARS) formation. The PL oxidation in the presence of copper in the liposome was not affected by the BBEP, which indicates that the hypothesis of ethanolamine plasmalogen (EthPm) chelating cupric ion as the antioxidation mechanism was not supported. The addition of cumene hydroperoxide to the egg PL liposome promoted lipid oxidation, as indicated by a fast development of PV and TBARS. However, the result with cumene hydroperoxide failed to differentiate the effect of BBEP and SL and their concentration on lipid oxidation. On the basis of the observations from this study, we conclude that EthPm is not an antioxidant but rather a pro-oxidant in a bulk lipid system, and it has no significant antioxidant effect for PL oxidation in the liposome.

Comments

Posted with permission from Journal of Agricultural and Food Chemistry, 58, no. 4 (2010): 2554–2561, doi: 10.1021/jf903906e. Copyright 2010 American Chemical Society.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2010
Collections