Nanoscale Friction Switches: Friction Modulation of Monomolecular Assemblies Using External Electric Fields

Thumbnail Image
Supplemental Files
Date
2009-09-01
Authors
Kanaga Karuppiah, K. S.
Zhou, Yibo
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Sundararajan, Sriram
Associate Dean
Person
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

This paper presents experimental investigations to actively modulate the nanoscale friction properties of a self-assembled monolayer (SAM) assembly using an external electric field that drives conformational changes in the SAM. Such “friction switches” have widespread implications in interfacial energy control in micro/nanoscale devices. Friction response of a low-density mercaptocarboxylic acid SAM is evaluated using an atomic force microscope (AFM) in the presence of a DC bias applied between the sample and the AFM probe under a nitrogen (dry) environment. The low density allows reorientation of individual SAM molecules to accommodate the attractive force between the −COOH terminal group and a positively biased surface. This enables the surface to present a hydrophilic group or a hydrophobic backbone to the contacting AFM probe depending upon the direction of the field (bias). Synthesis and deposition of the low-density SAM (LD-SAM) is reported. Results from AFM experiments show an increased friction response (up to 300%) of the LD-SAM system in the presence of a positive bias compared to the friction response in the presence of a negative bias. The difference in the friction response is attributed to the change in the structural and crystalline order of the film in addition to the interfacial surface chemistry and composition presented upon application of the bias.

Comments

Reprinted (adapted) with permission from Langmuir 25 (2009): 12114, doi:10.1021/la901221g. Copyright 2009 American Chemical Society.

Description
Keywords
Citation
DOI
Copyright
Thu Jan 01 00:00:00 UTC 2009
Collections