Revealing the Surface Structure of CdSe Nanocrystals by Dynamic Nuclear Polarization-Enhanced 77Se and 113Cd Solid-State NMR Spectroscopy

No Thumbnail Available
Date
2021-06-04
Authors
Chen, Yunhua
Dorn, Rick
Hanrahan, Michael
Wei, Lin
Blome-Fernández, Rafael
Medina-Gonzalez, Alan
Adamson, Marquix
Flintgruber, Anne
Vela, Javier
Rossini, Aaron
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Ames Laboratory
Abstract

Dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) spectroscopy was used to obtain detailed surface structures of zinc blende CdSe nanocrystals (NCs) with plate or spheroidal morphologies which are capped by carboxylic acid ligands. 1D 113Cd and 77Se cross-polarization magic angle spinning (CPMAS) NMR spectra revealed distinct signals from Cd and Se atoms on the surface of the NCs, and those residing in bulk-like environments, below the surface. 113Cd cross-polarization magic-angle-turning (CP-MAT) experiments identified CdSe3O, CdSe2O2, and CdSeO3 Cd coordination environments on the surface of the NCs, where the oxygen atoms are presumably from coordinated carboxylate ligands. The sensitivity gain from DNP enabled natural isotopic abundance 2D homonuclear 113Cd–113Cd and 77Se–77Se and heteronuclear 113Cd–77Se scalar correlation solid-state NMR experiments which revealed the connectivity of the Cd and Se atoms. Importantly, 77Se{113Cd} scalar heteronuclear multiple quantum coherence (J-HMQC) experiments were used to selectively measure one-bond 77Se–113Cd scalar coupling constants (1J(77Se, 113Cd)). With knowledge of 1J(77Se, 113Cd), heteronuclear 77Se{113Cd} spin echo (J-resolved) NMR experiments were used to determine the number of Cd atoms bonded to Se atoms and vice versa. The J-resolved experiments directly confirmed that major Cd and Se surface species have CdSe2O2 and SeCd4 stoichiometries, respectively. Considering the crystal structure of zinc blende CdSe and the similarity of the solid-state NMR data for the platelets and spheroids, we conclude that the surface of the spheroidal CdSe NCs is primarily composed of {100} facets. The methods outlined here will generally be applicable to obtain detailed surface structures of various main group semiconductor nanoparticles.

Comments
Description
Keywords
Citation
DOI
Copyright
Collections