Identification of Putative Parasitism Genes Expressed in the Esophageal Gland Cells of the Soybean Cyst Nematode Heterodera glycines

Thumbnail Image
Gao, Bingli
Allen, R.
Maier, Tom
Davis, Eric
Hussey, Richard
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Baum, Thomas
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Plant Pathology and Microbiology
The Department of Plant Pathology and Microbiology and the Department of Entomology officially merged as of September 1, 2022. The new department is known as the Department of Plant Pathology, Entomology, and Microbiology (PPEM). The overall mission of the Department is to benefit society through research, teaching, and extension activities that improve pest management and prevent disease. Collectively, the Department consists of about 100 faculty, staff, and students who are engaged in research, teaching, and extension activities that are central to the mission of the College of Agriculture and Life Sciences. The Department possesses state-of-the-art research and teaching facilities in the Advanced Research and Teaching Building and in Science II. In addition, research and extension activities are performed off-campus at the Field Extension Education Laboratory, the Horticulture Station, the Agriculture Engineering/Agronomy Farm, and several Research and Demonstration Farms located around the state. Furthermore, the Department houses the Plant and Insect Diagnostic Clinic, the Iowa Soybean Research Center, the Insect Zoo, and BugGuide. Several USDA-ARS scientists are also affiliated with the Department.
Journal Issue
Is Version Of

Cloning parasitism genes encoding secretory proteins expressed in the esophageal gland cells is the key to understanding the molecular basis of nematode parasitism of plants. Suppression subtractive hybridization (SSH) with the microaspirated contents from Heterodera glycines esophageal gland cells and intestinal region was used to isolate genes expressed preferentially in the gland cells of parasitic stages. Twenty-three unique cDNA sequences from a SSH cDNA library were identified and hybridized to the genomic DNA of H. glycines in Southern blots. Full-length cDNAs of 21 clones were obtained by screening a gland-cell long-distance polymerase chain reaction cDNA library. Deduced proteins of 10 clones were preceded by a signal peptide for secretion, and PSORT II computer analysis predicted eight proteins as extracellular, one as nuclear, and one as plasmalemma localized. In situ hybridization showed that four of the predicted extracellular clones were expressed specifically in the dorsal gland cell, one in the subventral gland cells, and three in the intestine in H. glycines. The predicted nuclear clone and the plasmalemma-localized clone were expressed in the subventral gland cells and the dorsal gland cell, respectively. SSH is an efficient method for cloning putative parasitism genes encoding esophageal gland cell secretory proteins that may have a role in H. glycines parasitism of soybean.


This article is published as Gao, Bingli, R. Allen, Tom Maier, Eric L. Davis, Thomas J. Baum, and Richard S. Hussey. "Identification of putative parasitism genes expressed in the esophageal gland cells of the soybean cyst nematode Heterodera glycines." Molecular Plant-Microbe Interactions 14, no. 10 (2001): 1247-1254, doi: 10.1094/MPMI.2001.14.10.1247. Posted with permission.

Mon Jan 01 00:00:00 UTC 2001