Modeling and simulation of strain-induced phase transformations under compression in a diamond anvil cell

Supplemental Files
Date
2010-11-23
Authors
Levitas, Valery
Zarechnyy, Oleg
Levitas, Valery
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Aerospace Engineering
Organizational Unit
Journal Issue
Series
Department
Aerospace Engineering
Abstract

Strain-induced phase transformations (PTs) under high-pressure differ fundamentally from the pressure-induced PTs under quasihydrostatic conditions. A model and finite-element approach to strain-induced PTs under compression and torsion of a sample in rotational diamond anvil cell are developed. The current paper is devoted to the numerical study of strain-induced PTs under compression in traditional diamond anvils while the accompanying paper [ V. I. Levitas and O. M. Zarechnyy Phys. Rev. B 82 174124 (2010)] is concerned with compression and torsion in rotational anvils. Very heterogeneous fields of stress tensor, accumulated plastic strain, and concentration of the high-pressure phase are determined for three ratios of yield strengths of low-pressure and high-pressure phases. PT kinetics depends drastically on the yield strengths ratios. For a stronger high-pressure phase, an increase in strength during PT increases pressure and promotes PT, serving as a positive mechanochemical feedback; however, maximum pressure in a sample is much larger than required for PT. For a weaker high-pressure phase, strong strain and high-pressure phase localization and irregular stress fields are obtained. Various experimentally observed effects are reproduced and interpreted. Obtained results revealed difficulties in experimental characterization of strain-induced PTs and suggested some ways to overcome them.

Comments

This article is from Physical Review B 82 (2010): 174123, doi:10.1103/PhysRevB.82.174123. Posted with permission.

Description
Keywords
Citation
DOI
Collections