Models for the Frequency Dependence of Ultrasonic Scattering from Real Flaws

Thumbnail Image
Date
1977
Authors
Adler, Laszlo
Lewis, Kent
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

My objective is to help develop a quantitative working model for a typical nondestructive testing system. Specifically, our objective is to relate the parameters which characterize a defect s~ch as size, orientation, and shape to the ultrasonic scattering field parameters such as amplitude, frequency, scattering angle, and polarization or mode conversion. In Fig. 1 is shown a flat surface sample immersed in liquid containing a real flaw a certain distance below the surface; i.e., in the bulk of the material. Sound waves propagate through the liquid and for the simplest case the wave front enters such that only incident longitudinal waves are present. The waves .at the flaw are scattered, and also mode converted; the scattered wave, which will now be both shear and longitudinal will be reconverted back to a longitudinal wave once leaving the solid body and picked up by a receiver oriented at some angle.

Comments
Description
Keywords
Citation
DOI
Source
Copyright