Effects of insecticide exposure on movement and population size estimates of predatory ground beetles (Coleoptera: Carabidae)

Thumbnail Image
Date
2008-01-01
Authors
Prasifka, Jarrad
Lopez, Miriam
Hellmich, Richard
Prasifka, Patricia
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Entomology
Abstract

BACKGROUND: Estimates of arthropod population size may paradoxically increase following insecticide applications. Research with ground beetles (Coleoptera: Carabidae) suggests that such unusual results reflect increased arthropod movement and capture in traps rather than real changes in population size. However, it is unclear whether direct (hyperactivity) or indirect (prey-mediated) mechanisms produce increased movement.

RESULTS: Video tracking of Scarites quadriceps Chaudior indicated that brief exposure to lambda-cyhalothrin or tefluthrin increased total distance moved, maximum velocity and percentage of time moving. Repeated measurements on individual beetles indicated that movement decreased 240 min after initial lambda-cyhalothrin exposure, but increased again following a second exposure, suggesting hyperactivity could lead to increased trap captures in the field. Two field experiments in which ground beetles were collected after lambda-cyhalothrin or permethrin application attempted to detect increases in population size estimates as a result of hyperactivity. Field trials used mark–release–recapture methods in small plots and natural carabid populations in larger plots, but found no significant short-term (<6 day) increases in beetle trap captures.

CONCLUSION: The disagreement between laboratory and field results suggests mechanisms other than hyperactivity may better explain unusual changes in population size estimates. When traps are used as a primary sampling tool, unexpected population-level effects should be interpreted carefully or with additional data less influenced by arthropod activity

Comments

This article is from Pest Management Science; 64 (2008); 30-36; doi: 10.1002/ps.1460

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Collections