Hybrid robust and stochastic optimization for closed-loop supply chain network design using accelerated Benders decomposition

Thumbnail Image
Date
2016-02-01
Authors
Keyvanshokooh, Esmaeil
Kabir, Elnaz
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Ryan, Sarah
Department Chair
Research Projects
Organizational Units
Organizational Unit
Industrial and Manufacturing Systems Engineering
The Department of Industrial and Manufacturing Systems Engineering teaches the design, analysis, and improvement of the systems and processes in manufacturing, consulting, and service industries by application of the principles of engineering. The Department of General Engineering was formed in 1929. In 1956 its name changed to Department of Industrial Engineering. In 1989 its name changed to the Department of Industrial and Manufacturing Systems Engineering.
Journal Issue
Is Version Of
Versions
Series
Abstract

Environmental, social and economic concerns motivate the operation of closed-loop supply chain networks (CLSCN) in many industries. We propose a novel profit maximization model for CLSCN design as a mixed-integer linear program in which there is flexibility in covering the proportions of demand satisfied and returns collected based on the firm's policies. Our major contribution is to develop a novel hybrid robust-stochastic programming (HRSP) approach to simultaneously model two different types of uncertainties by including stochastic scenarios for transportation costs and polyhedral uncertainty sets for demands and returns. Transportation cost scenarios are generated using a Latin Hypercube Sampling method and scenario reduction is applied to consolidate them. An accelerated stochastic Benders decomposition algorithm is proposed for solving this model. To speed up the convergence of this algorithm, valid inequalities are introduced to improve the lower bound quality, and also a Pareto-optimal cut generation scheme is used to strengthen the Benders optimality cuts. Numerical studies are performed to verify our mathematical formulation and also demonstrate the benefits of the HRSP approach. The performance improvements achieved by the valid inequalities and Pareto-optimal cuts are demonstrated in randomly generated instances.

Comments

NOTICE: this is the author’s version of a work that was accepted for publication in European Journal of Operational Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in European Journal of Operational Research, 249, issue 1, (2016): doi: 10.1016/j.ejor.2015.08.028

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2016
Collections