Exogenous administration of vascular endothelial growth factor prior to human respiratory syncytial virus a2 infection reduces pulmonary pathology in neonatal lambs and alters epithelial innate immune responses

Thumbnail Image
Date
2011-04-01
Authors
Olivier, Alicia
Van Geelen, Albert
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Gallup, Jack
Assistant Scientist III
Person
Ackermann, Mark
Affiliate Professor
Research Projects
Organizational Units
Organizational Unit
Veterinary Pathology
The Department of Veterinary Pathology Labs provides high quality diagnostic service to veterinarians in Iowa and throughout the Midwest. Packages may be delivered through the postage service or by dropping samples off at our lab in Iowa State University’s College of Veterinary Medicine campus.
Journal Issue
Is Version Of
Versions
Series
Abstract

Human respiratory syncytial virus (RSV) affects thousands of children every year. Vascular endothelial growth factor (VEGF) is a regulator of vasculogenesis, pulmonary maturation, and immunity. In order to test the extent to which VEGF may alter RSV infection, 4 groups of lambs received either human recombinant VEGF (rhVEGF) or phosphate-buffered saline (PBS) pretreatment followed by inoculation with human RSV strain A2 or sterile medium. Lambs in each group were sacrificed at 2, 4, and 6 days post infection. Expression of surfactant protein-A (SP-A), surfactant protein-D (SP-D), sheep β-defensin-1 (SBD-1), tumor necrosis factor α (TNFα), interleukin (IL)-6, IL-8, interferon β, and endogenous VEGF were measured to determine effect of rhVEGF pretreatment. RSV lambs pretreated with rhVEGF had reduced viral mRNA and decreased pulmonary pathology at day 6. Pretreatment with rhVEGF increased mRNA expression of SP-A, SBD-1, and TNFα, with alteration of expression in RSV lambs. Endogenous VEGF mRNA levels were increased at day 2 regardless of pretreatment. Pretreatment with rhVEGF increased pulmonary cellular proliferation in RSV lambs at day 4 post infection. Overall, these results suggest that pretreatment with rhVEGF protein may have therapeutic potential to decrease RSV viral load, decrease pulmonary lesion severity, and alter both epithelial innate immune responses and epithelial cell proliferation.

Comments

This is a post-print of an article from Experimental Lung Research 37, no. 3 (April 2011): 131–143, doi:10.3109/01902148.2010.484518.

Description
Keywords
Citation
DOI
Copyright
Sat Jan 01 00:00:00 UTC 2011
Collections