Direct glycerol fuel cell with polytetrafluoroethylene (PTFE) thin film separator
dc.contributor.author | Benipal, Neeva | |
dc.contributor.author | Qi, Ji | |
dc.contributor.author | Gentile, Jacob | |
dc.contributor.author | Li, Wenzhen | |
dc.contributor.department | Ames National Laboratory | |
dc.contributor.department | Department of Chemical and Biological Engineering | |
dc.contributor.department | Ames Laboratory | |
dc.date | 2021-07-15T22:46:59.000 | |
dc.date.accessioned | 2021-08-14T02:50:20Z | |
dc.date.available | 2021-08-14T02:50:20Z | |
dc.date.copyright | Sun Jan 01 00:00:00 UTC 2017 | |
dc.date.issued | 2017-05-01 | |
dc.description.abstract | <p><a href="https://www.sciencedirect.com/topics/engineering/anion-exchange" title="Learn more about Anion Exchange from ScienceDirect's AI-generated Topic Pages">Anion-exchange</a> membrane-based direct <a href="https://www.sciencedirect.com/topics/engineering/glycerols" title="Learn more about Glycerols from ScienceDirect's AI-generated Topic Pages">glycerol</a> fuel cells (AEM-DGFCs) can yield high power density, however challenges exist in developing chemically stable AEMs. Here, we demonstrate a porous PTFE thin film, a well-known chemical, electro-chemical, and thermal robust material that can serve as a separator between <a href="https://www.sciencedirect.com/topics/engineering/anodes-and-cathode" title="Learn more about Anodes and Cathode from ScienceDirect's AI-generated Topic Pages">anode and cathode</a>, thus achieving high DGFC’s performance. A simple <a href="https://www.sciencedirect.com/topics/engineering/aqueous-phase" title="Learn more about Aqueous Phase from ScienceDirect's AI-generated Topic Pages">aqueous-phase</a> reduction method was used to prepare carbon nanotube supported PdAg nanoparticles (PdAg/CNT) with an average particle size of 2.9 nm. A DGFC using a PTFE thin film without any further modification with PdAg/CNT anode catalyst exhibits a <a href="https://www.sciencedirect.com/topics/engineering/peak-power-density" title="Learn more about Peak Power Density from ScienceDirect's AI-generated Topic Pages">peak power density</a> of 214.7 mW cm−2 at 80 °C, about 22.6% lower than a DGFC using a state-of-the-art AEM. We report a 5.8% decrease and 11.1% decrease in <a href="https://www.sciencedirect.com/topics/engineering/cell-voltage" title="Learn more about Cell Voltage from ScienceDirect's AI-generated Topic Pages">cell voltage</a> for a PTFE thin film and AEM; similarly, the cell voltage <a href="https://www.sciencedirect.com/topics/engineering/degradation-rate" title="Learn more about Degradation Rate from ScienceDirect's AI-generated Topic Pages">degradation rate</a> decreases from 1.2 to 0.8 mV h−1 for PTFE thin film, while for AEM, it decreases from 9.6 to 3.0 mV h−1 over an 80 h durability test period. <a href="https://www.sciencedirect.com/topics/engineering/transmission-electron-microscopy" title="Learn more about Transmission Electron Microscopy from ScienceDirect's AI-generated Topic Pages">Transmission electron microscopy</a> results indicate that the average particle size of PdAg/CNT increases from 2.9 to 3.7 nm after 80 h discharge; this suggests that PdAg particle growth may be the main reason for the performance drop.</p> | |
dc.description.comments | <p>This is a manuscript of an article published as Benipal, Neeva, Ji Qi, Jacob C. Gentile, and Wenzhen Li. "Direct glycerol fuel cell with polytetrafluoroethylene (PTFE) thin film separator." <em>Renewable Energy</em> 105 (2017): 647-655. DOI: <a href="https://doi.org/10.1016/j.renene.2016.12.028" target="_blank">10.1016/j.renene.2016.12.028</a>. Posted with permission.</p> | |
dc.format.mimetype | application/pdf | |
dc.identifier | archive/lib.dr.iastate.edu/cbe_pubs/479/ | |
dc.identifier.articleid | 1476 | |
dc.identifier.contextkey | 23842860 | |
dc.identifier.s3bucket | isulib-bepress-aws-west | |
dc.identifier.submissionpath | cbe_pubs/479 | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/JvNVQ1av | |
dc.language.iso | en | |
dc.source.bitstream | archive/lib.dr.iastate.edu/cbe_pubs/479/2017_LiWenzhen_DirectGlycerol.pdf|||Sat Jan 15 00:26:29 UTC 2022 | |
dc.source.uri | 10.1016/j.renene.2016.12.028 | |
dc.subject.disciplines | Energy Systems | |
dc.subject.disciplines | Membrane Science | |
dc.subject.keywords | Direct glycerol fuel cell | |
dc.subject.keywords | Polytetrafluoroethylene (PTFE) | |
dc.subject.keywords | Thin films | |
dc.subject.keywords | Porous separator | |
dc.subject.keywords | Anion exchange membrane | |
dc.subject.keywords | Biomass renewables | |
dc.title | Direct glycerol fuel cell with polytetrafluoroethylene (PTFE) thin film separator | |
dc.type | article | |
dc.type.genre | article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 94006f2f-7cde-4591-88fa-ab8f0c027ffe | |
relation.isOrgUnitOfPublication | 25913818-6714-4be5-89a6-f70c8facdf7e | |
relation.isOrgUnitOfPublication | 86545861-382c-4c15-8c52-eb8e9afe6b75 |
File
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 2017_LiWenzhen_DirectGlycerol.pdf
- Size:
- 1.76 MB
- Format:
- Adobe Portable Document Format
- Description: