Direct glycerol fuel cell with polytetrafluoroethylene (PTFE) thin film separator Benipal, Neeva Qi, Ji Gentile, Jacob Li, Wenzhen
dc.contributor.department Ames National Laboratory
dc.contributor.department Chemical and Biological Engineering 2021-07-15T22:46:59.000 2021-08-14T02:50:20Z 2021-08-14T02:50:20Z Sun Jan 01 00:00:00 UTC 2017 2017-05-01
dc.description.abstract <p><a href="" title="Learn more about Anion Exchange from ScienceDirect's AI-generated Topic Pages">Anion-exchange</a> membrane-based direct <a href="" title="Learn more about Glycerols from ScienceDirect's AI-generated Topic Pages">glycerol</a> fuel cells (AEM-DGFCs) can yield high power density, however challenges exist in developing chemically stable AEMs. Here, we demonstrate a porous PTFE thin film, a well-known chemical, electro-chemical, and thermal robust material that can serve as a separator between <a href="" title="Learn more about Anodes and Cathode from ScienceDirect's AI-generated Topic Pages">anode and cathode</a>, thus achieving high DGFC’s performance. A simple <a href="" title="Learn more about Aqueous Phase from ScienceDirect's AI-generated Topic Pages">aqueous-phase</a> reduction method was used to prepare carbon nanotube supported PdAg nanoparticles (PdAg/CNT) with an average particle size of 2.9 nm. A DGFC using a PTFE thin film without any further modification with PdAg/CNT anode catalyst exhibits a <a href="" title="Learn more about Peak Power Density from ScienceDirect's AI-generated Topic Pages">peak power density</a> of 214.7 mW cm−2 at 80 °C, about 22.6% lower than a DGFC using a state-of-the-art AEM. We report a 5.8% decrease and 11.1% decrease in <a href="" title="Learn more about Cell Voltage from ScienceDirect's AI-generated Topic Pages">cell voltage</a> for a PTFE thin film and AEM; similarly, the cell voltage <a href="" title="Learn more about Degradation Rate from ScienceDirect's AI-generated Topic Pages">degradation rate</a> decreases from 1.2 to 0.8 mV h−1 for PTFE thin film, while for AEM, it decreases from 9.6 to 3.0 mV h−1 over an 80 h durability test period. <a href="" title="Learn more about Transmission Electron Microscopy from ScienceDirect's AI-generated Topic Pages">Transmission electron microscopy</a> results indicate that the average particle size of PdAg/CNT increases from 2.9 to 3.7 nm after 80 h discharge; this suggests that PdAg particle growth may be the main reason for the performance drop.</p>
dc.description.comments <p>This is a manuscript of an article published as Benipal, Neeva, Ji Qi, Jacob C. Gentile, and Wenzhen Li. "Direct glycerol fuel cell with polytetrafluoroethylene (PTFE) thin film separator." <em>Renewable Energy</em> 105 (2017): 647-655. DOI: <a href="" target="_blank">10.1016/j.renene.2016.12.028</a>. Posted with permission.</p>
dc.format.mimetype application/pdf
dc.identifier archive/
dc.identifier.articleid 1476
dc.identifier.contextkey 23842860
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath cbe_pubs/479
dc.language.iso en
dc.source.bitstream archive/|||Sat Jan 15 00:26:29 UTC 2022
dc.source.uri 10.1016/j.renene.2016.12.028
dc.subject.disciplines Energy Systems
dc.subject.disciplines Membrane Science
dc.subject.keywords Direct glycerol fuel cell
dc.subject.keywords Polytetrafluoroethylene (PTFE)
dc.subject.keywords Thin films
dc.subject.keywords Porous separator
dc.subject.keywords Anion exchange membrane
dc.subject.keywords Biomass renewables
dc.title Direct glycerol fuel cell with polytetrafluoroethylene (PTFE) thin film separator
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication 94006f2f-7cde-4591-88fa-ab8f0c027ffe
relation.isOrgUnitOfPublication 25913818-6714-4be5-89a6-f70c8facdf7e
relation.isOrgUnitOfPublication 86545861-382c-4c15-8c52-eb8e9afe6b75
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
1.76 MB
Adobe Portable Document Format