A Comparison of Time-Frequency Methods for Real-Time Application to High-Rate Dynamic Systems

Thumbnail Image
Date
2020-08-24
Authors
Yan, Jin
Singh, Premjeet
Sadhu, Ayan
Dodson, Jacob
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Multidisciplinary Digital Publishing Institute
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Department
Civil, Construction and Environmental Engineering
Abstract
High-rate dynamic systems are defined as engineering systems experiencing dynamic events of typical amplitudes higher than 100 g𝑛 for a duration of less than 100 ms. The implementation of feedback decision mechanisms in high-rate systems could improve their operations and safety, and even be critical to their deployment. However, these systems are characterized by large uncertainties, high non-stationarities, and unmodeled dynamics, and it follows that the design of real-time state-estimators for such purpose is difficult. In this paper, we compare the promise of five time-frequency representation (TFR) methods at conducting real-time state estimation for high-rate systems, with the objective of providing a path to designing implementable algorithms. In particular, we examine the performance of the short-time Fourier transform (STFT), wavelet transformation (WT), Wigner–Ville distribution (WVD), synchrosqueezed transform (SST), and multi-synchrosqueezed transform (MSST) methods. This study is conducted using experimental data from the DROPBEAR (Dynamic Reproduction of Projectiles in Ballistic Environments for Advanced Research) testbed, consisting of a rapidly moving cart on a cantilever beam that acts as a moving boundary condition. The capability of each method at extracting the beam’s fundamental frequency is evaluated in terms of precision, spectral energy concentration, computation speed, and convergence speed. It is found that both the STFT and WT methods are promising methods due to their fast computation speed, with the WT showing particular promise due to its faster convergence, but at the cost of lower precision on the estimation depending on circumstances.
Comments
This article is published as Yan, Jin, Simon Laflamme, Premjeet Singh, Ayan Sadhu, and Jacob Dodson. "A comparison of time-frequency methods for real-time application to high-rate dynamic systems." Vibration 3, no. 3 (2020): 204-216. doi: https://doi.org/10.3390/vibration3030016. Copyright 2020 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Description
Keywords
Citation
DOI
Copyright
Collections