One Sided Inspection for Elastic Constant Determination of Advanced Materials

Thumbnail Image
Date
1991
Authors
Rose, Joseph
Huang, Yimei
Ditri, John
Dandekar, Dattatraya
Chou, Shun-Shin
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

Knowledge of mechanical properties of a composite material is prerequisite to good engineering design. The problem of theoretically predicting the mechanical properties of a composite material as a function of the properties of its constituents has been thoroughly investigated by many authors [1–2]. In one general class of techniques, termed “effective modulus” theories, the composite is viewed as a homogeneous anisotropic material with “effective” elastic constants that are determined by the elastic constants of the constituent materials. All of these theories remove the microstructure of the composite from consideration and, as a result, cannot be expected to predict accurately the properties of the composite material over a wide range of deformation scales. One limitation which comes about from this “smearing” of the microstructure into a homogeneous continuum is that the effective modulus theories, and hence materials which are assumed to have “effective elastic constants”, are incapable of predicting frequency dispersion of waves, which is sometimes very pronounced in composite materials [3].

Comments
Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 1991