An Algebra for Belief Persistence in Multilevel Security Databases

Thumbnail Image
Date
1995-09-01
Authors
Cheng, Tsz
Gadia, Shashi
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Computer Science

Computer Science—the theory, representation, processing, communication and use of information—is fundamentally transforming every aspect of human endeavor. The Department of Computer Science at Iowa State University advances computational and information sciences through; 1. educational and research programs within and beyond the university; 2. active engagement to help define national and international research, and 3. educational agendas, and sustained commitment to graduating leaders for academia, industry and government.

History
The Computer Science Department was officially established in 1969, with Robert Stewart serving as the founding Department Chair. Faculty were composed of joint appointments with Mathematics, Statistics, and Electrical Engineering. In 1969, the building which now houses the Computer Science department, then simply called the Computer Science building, was completed. Later it was named Atanasoff Hall. Throughout the 1980s to present, the department expanded and developed its teaching and research agendas to cover many areas of computing.

Dates of Existence
1969-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Abstract

In a multilevel security environment, the security levels form a hierarchy which is generally assumed to be a lattice. A user can see not only its own information, but also information belonging to lower users. In a multilevel security database, different users have different beliefs (versions of information) about the same real world object. In this paper we present a relational model SecDB for multilevel security data. We also present an SQL-like language SecSQL for querying security information. For a given level, a tuple consists of all the differing beliefs about the same real world object. Therefore, the model provides a built-in coherence to different beliefs of the same real world object. For an operator to be well defined, its application should preserve beliefs and coherence. This persistence of belief and coherence is achieved through the concept of an anchor borrowed from an earlier work. On one hand (in addition to the usual database queries) SecSQL yields itself naturally to formulation of security related queries, yet on the other hand the algebraic operators yield natural identities which hold a good promise of algebraic optimization.

Comments
Description
Keywords
Citation
DOI
Source
Copyright
Collections