Air Quality Measurements at a Laying Hen House: Particulate Matter Concentrations and Emissions

Thumbnail Image
Date
2003-10-01
Authors
Lim, T.
Heber, Albert
Ni, Ji-Qin
Gallien, J.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Xin, Hongwei
Distinguished Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

Particulate matter (PM) was measured in the ventilation exhaust air of a caged layer house using three tapered element oscillating microbalances (TEOMs). Diurnal patterns of PM concentration and emission were observed during 6 days in June 2002. The average daily mean (±95% c.i.) concentrations and emissions were 39±8.0, 518±74, and 1887±563 .g/m3 and 1.1±0.3, 16±3.4, and 63±15 g/d-AU for PM2.5, PM10, and total suspended particulates (TSP), respectively. Daytime (lights on) PM2.5, PM10, and TSP concentrations were 151, 108, and 136% higher (P<0.05) than at night. Emissions peaked during the day when birds were most active and ventilation rates were the highest. Wide diurnal variations in PM concentration and ventilation were observed. PM emission was correlated to ventilation, ambient and exhaust temperatures, and relative humidity (P<0.05).

Comments

This proceedings is from Pp. 249-256 in Air Pollution from Agricultural Operations III, Proceedings of the 12-15 October 2003 Conference (Research Triangle Park, North Carolina USA), Publication Date 12 October 2003. ASAE Publication Number 701P1403, ed. H. Keener.

Description
Keywords
Citation
DOI
Source
Copyright
Wed Jan 01 00:00:00 UTC 2003