Multiyear Droughts and Pluvials over the Upper Colorado River Basin and Associated Circulations

Thumbnail Image
Date
2017-03-01
Authors
Abatan, Abayomi
Ammann, Caspar
Kaatz, Laurna
Brown, Barbara
Buja, Lawrence
Bullock, Randy
Fowler, Tressa
Gilleland, Eric
Gotway, John
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Gutowski, William
Professor
Research Projects
Organizational Units
Organizational Unit
Geological and Atmospheric Sciences

The Department of Geological and Atmospheric Sciences offers majors in three areas: Geology (traditional, environmental, or hydrogeology, for work as a surveyor or in mineral exploration), Meteorology (studies in global atmosphere, weather technology, and modeling for work as a meteorologist), and Earth Sciences (interdisciplinary mixture of geology, meteorology, and other natural sciences, with option of teacher-licensure).

History
The Department of Geology and Mining was founded in 1898. In 1902 its name changed to the Department of Geology. In 1965 its name changed to the Department of Earth Science. In 1977 its name changed to the Department of Earth Sciences. In 1989 its name changed to the Department of Geological and Atmospheric Sciences.

Dates of Existence
1898-present

Historical Names

  • Department of Geology and Mining (1898-1902)
  • Department of Geology (1902-1965)
  • Department of Earth Science (1965-1977)
  • Department of Earth Sciences (1977-1989)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

This study analyzes spatial and temporal characteristics of multiyear droughts and pluvials over the southwestern United States with a focus on the upper Colorado River basin. The study uses two multiscalar moisture indices: standardized precipitation evapotranspiration index (SPEI) and standardized precipitation index (SPI) on a 36-month scale (SPEI36 and SPI36, respectively). The indices are calculated from monthly average precipitation and maximum and minimum temperatures from the Parameter-Elevation Regressions on Independent Slopes Model dataset for the period 1950–2012. The study examines the relationship between individual climate variables as well as large-scale atmospheric circulation features found in reanalysis output during drought and pluvial periods. The results indicate that SPEI36 and SPI36 show similar temporal and spatial patterns, but that the inclusion of temperatures in SPEI36 leads to more extreme magnitudes in SPEI36 than in SPI36. Analysis of large-scale atmospheric fields indicates an interplay between different fields that yields extremes over the study region. Widespread drought (pluvial) events are associated with enhanced positive (negative) 500-hPa geopotential height anomaly linked to subsidence (ascent) and negative (positive) moisture convergence and precipitable water anomalies. Considering the broader context of the conditions responsible for the occurrence of prolonged hydrologic anomalies provides water resource managers and other decision-makers with valuable understanding of these events. This perspective also offers evaluation opportunities for climate models.

Comments

This article is published as Abatan, Abayomi A., William J. Gutowski Jr, Caspar M. Ammann, Laurna Kaatz, Barbara G. Brown, Lawrence Buja, Randy Bullock, Tressa Fowler, Eric Gilleland, and John Halley Gotway. "Multiyear Droughts and Pluvials over the Upper Colorado River Basin and Associated Circulations." Journal of Hydrometeorology 18, no. 3 (2017): 799-818. doi: 10.1175/JHM-D-16-0125.1. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Sun Jan 01 00:00:00 UTC 2017
Collections