On Critical Exponents for a Semilinear Parabolic System Coupled in an Equation and a Boundary Condition

dc.contributor.author Fila, Marek
dc.contributor.author Levine, Howard
dc.contributor.department Mathematics
dc.date 2018-02-19T07:12:18.000
dc.date.accessioned 2020-06-30T06:00:04Z
dc.date.available 2020-06-30T06:00:04Z
dc.date.copyright Mon Jan 01 00:00:00 UTC 1996
dc.date.issued 1996-12-01
dc.description.abstract <p>In this paper, we consider the system \arraycolsep0.14em\begin{array}{rcl {\hskip2em}rcl {\hskip2em}c}u_t&=&\Delta u+v^p,&v_t&=&\Delta v&x\in{\Bbb R}_{+}^N,t>0,\\ \displaystyle-{\partial u\over\partial x_t}&=&0,&\displaystyle-{\partial v\over\partial x_t}&=&u^q&x_1=0,t>0,\\ u(x,0)&=&u_0(x),&v(x,0)&=&v_0(x)&x\in{\Bbb R}_{+}^N, whereR" role="presentation" style="box-sizing: border-box; display: inline-block; line-height: normal; font-size: 14.4px; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">R<em>N</em>+={(<em>x</em>1, <em>x</em>′)|<em>x</em>′∈R" role="presentation" style="box-sizing: border-box; display: inline-block; line-height: normal; font-size: 14.4px; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">R<em>N</em>−1, <em>x</em>1>0}, <em>p</em>, <em>q</em>>0, and<em>u</em>0, <em>v</em>0are nonnegative and bounded. We prove that if<em>pq</em>≤1 every nonnegative solution is global. When<em>pq</em>>1 we let α=(<em>p</em>+2)/2(<em>pq</em>−1), β=(2<em>q</em>+1)/2(<em>pq</em>−1). We show that if max(α, β)><em>N</em>/2 or max(α, β)=<em>N</em>/2 and<em>p</em>, <em>q</em>≥1, then all nontrivial nonnegative solutions are nonglobal; whereas if max(α, β)<<em>N</em>/2 there exist both global and nonglobal nonnegative solutions.</p>
dc.description.comments <p>This is a manuscript of an article published as Fila, Marek, and Howard A. Levine. "On critical exponents for a semilinear parabolic system coupled in an equation and a boundary condition." <em>Journal of mathematical analysis and applications</em> 204, no. 2 (1996): 494-521. DOI: <a href="http://dx.doi.org/10.1006/jmaa.1996.0451" target="_blank">10.1006/jmaa.1996.0451</a>. Copyright 1996 Elsevier Ltd. Posted with permission.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/math_pubs/167/
dc.identifier.articleid 1169
dc.identifier.contextkey 11346272
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath math_pubs/167
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/54554
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/math_pubs/167/1996_Levine_CriticalExponents.pdf|||Fri Jan 14 21:04:45 UTC 2022
dc.source.uri 10.1006/jmaa.1996.0451
dc.subject.disciplines Applied Mathematics
dc.subject.disciplines Numerical Analysis and Computation
dc.subject.disciplines Ordinary Differential Equations and Applied Dynamics
dc.title On Critical Exponents for a Semilinear Parabolic System Coupled in an Equation and a Boundary Condition
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isOrgUnitOfPublication 82295b2b-0f85-4929-9659-075c93e82c48
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1996_Levine_CriticalExponents.pdf
Size:
262.76 KB
Format:
Adobe Portable Document Format
Description:
Collections