On Critical Exponents for a Semilinear Parabolic System Coupled in an Equation and a Boundary Condition
dc.contributor.author | Fila, Marek | |
dc.contributor.author | Levine, Howard | |
dc.contributor.department | Mathematics | |
dc.date | 2018-02-19T07:12:18.000 | |
dc.date.accessioned | 2020-06-30T06:00:04Z | |
dc.date.available | 2020-06-30T06:00:04Z | |
dc.date.copyright | Mon Jan 01 00:00:00 UTC 1996 | |
dc.date.issued | 1996-12-01 | |
dc.description.abstract | <p>In this paper, we consider the system \arraycolsep0.14em\begin{array}{rcl {\hskip2em}rcl {\hskip2em}c}u_t&=&\Delta u+v^p,&v_t&=&\Delta v&x\in{\Bbb R}_{+}^N,t>0,\\ \displaystyle-{\partial u\over\partial x_t}&=&0,&\displaystyle-{\partial v\over\partial x_t}&=&u^q&x_1=0,t>0,\\ u(x,0)&=&u_0(x),&v(x,0)&=&v_0(x)&x\in{\Bbb R}_{+}^N, whereR" role="presentation" style="box-sizing: border-box; display: inline-block; line-height: normal; font-size: 14.4px; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">R<em>N</em>+={(<em>x</em>1, <em>x</em>′)|<em>x</em>′∈R" role="presentation" style="box-sizing: border-box; display: inline-block; line-height: normal; font-size: 14.4px; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">R<em>N</em>−1, <em>x</em>1>0}, <em>p</em>, <em>q</em>>0, and<em>u</em>0, <em>v</em>0are nonnegative and bounded. We prove that if<em>pq</em>≤1 every nonnegative solution is global. When<em>pq</em>>1 we let α=(<em>p</em>+2)/2(<em>pq</em>−1), β=(2<em>q</em>+1)/2(<em>pq</em>−1). We show that if max(α, β)><em>N</em>/2 or max(α, β)=<em>N</em>/2 and<em>p</em>, <em>q</em>≥1, then all nontrivial nonnegative solutions are nonglobal; whereas if max(α, β)<<em>N</em>/2 there exist both global and nonglobal nonnegative solutions.</p> | |
dc.description.comments | <p>This is a manuscript of an article published as Fila, Marek, and Howard A. Levine. "On critical exponents for a semilinear parabolic system coupled in an equation and a boundary condition." <em>Journal of mathematical analysis and applications</em> 204, no. 2 (1996): 494-521. DOI: <a href="http://dx.doi.org/10.1006/jmaa.1996.0451" target="_blank">10.1006/jmaa.1996.0451</a>. Copyright 1996 Elsevier Ltd. Posted with permission.</p> | |
dc.format.mimetype | application/pdf | |
dc.identifier | archive/lib.dr.iastate.edu/math_pubs/167/ | |
dc.identifier.articleid | 1169 | |
dc.identifier.contextkey | 11346272 | |
dc.identifier.s3bucket | isulib-bepress-aws-west | |
dc.identifier.submissionpath | math_pubs/167 | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/54554 | |
dc.language.iso | en | |
dc.source.bitstream | archive/lib.dr.iastate.edu/math_pubs/167/1996_Levine_CriticalExponents.pdf|||Fri Jan 14 21:04:45 UTC 2022 | |
dc.source.uri | 10.1006/jmaa.1996.0451 | |
dc.subject.disciplines | Applied Mathematics | |
dc.subject.disciplines | Numerical Analysis and Computation | |
dc.subject.disciplines | Ordinary Differential Equations and Applied Dynamics | |
dc.title | On Critical Exponents for a Semilinear Parabolic System Coupled in an Equation and a Boundary Condition | |
dc.type | article | |
dc.type.genre | article | |
dspace.entity.type | Publication | |
relation.isOrgUnitOfPublication | 82295b2b-0f85-4929-9659-075c93e82c48 |
File
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 1996_Levine_CriticalExponents.pdf
- Size:
- 262.76 KB
- Format:
- Adobe Portable Document Format
- Description: