## On Critical Exponents for a Semilinear Parabolic System Coupled in an Equation and a Boundary Condition

 dc.contributor.author Fila, Marek dc.contributor.author Levine, Howard dc.contributor.department Mathematics dc.date 2018-02-19T07:12:18.000 dc.date.accessioned 2020-06-30T06:00:04Z dc.date.available 2020-06-30T06:00:04Z dc.date.copyright Mon Jan 01 00:00:00 UTC 1996 dc.date.issued 1996-12-01 dc.description.abstract

In this paper, we consider the system \arraycolsep0.14em\begin{array}{rcl {\hskip2em}rcl {\hskip2em}c}u_t&=&\Delta u+v^p,&v_t&=&\Delta v&x\in{\Bbb R}_{+}^N,t>0,\\ \displaystyle-{\partial u\over\partial x_t}&=&0,&\displaystyle-{\partial v\over\partial x_t}&=&u^q&x_1=0,t>0,\\ u(x,0)&=&u_0(x),&v(x,0)&=&v_0(x)&x\in{\Bbb R}_{+}^N, whereR" role="presentation" style="box-sizing: border-box; display: inline-block; line-height: normal; font-size: 14.4px; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">RN+={(x1, x′)|x′∈R" role="presentation" style="box-sizing: border-box; display: inline-block; line-height: normal; font-size: 14.4px; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">RN−1, x1>0}, p, q>0, andu0, v0are nonnegative and bounded. We prove that ifpq≤1 every nonnegative solution is global. Whenpq>1 we let α=(p+2)/2(pq−1), β=(2q+1)/2(pq−1). We show that if max(α, β)>N/2 or max(α, β)=N/2 andp, q≥1, then all nontrivial nonnegative solutions are nonglobal; whereas if max(α, β)<N/2 there exist both global and nonglobal nonnegative solutions.

This is a manuscript of an article published as Fila, Marek, and Howard A. Levine. "On critical exponents for a semilinear parabolic system coupled in an equation and a boundary condition." Journal of mathematical analysis and applications 204, no. 2 (1996): 494-521. DOI: 10.1006/jmaa.1996.0451. Copyright 1996 Elsevier Ltd. Posted with permission.

dc.format.mimetype application/pdf dc.identifier archive/lib.dr.iastate.edu/math_pubs/167/ dc.identifier.articleid 1169 dc.identifier.contextkey 11346272 dc.identifier.s3bucket isulib-bepress-aws-west dc.identifier.submissionpath math_pubs/167 dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/54554 dc.language.iso en dc.source.bitstream archive/lib.dr.iastate.edu/math_pubs/167/1996_Levine_CriticalExponents.pdf|||Fri Jan 14 21:04:45 UTC 2022 dc.source.uri 10.1006/jmaa.1996.0451 dc.subject.disciplines Applied Mathematics dc.subject.disciplines Numerical Analysis and Computation dc.subject.disciplines Ordinary Differential Equations and Applied Dynamics dc.title On Critical Exponents for a Semilinear Parabolic System Coupled in an Equation and a Boundary Condition dc.type article dc.type.genre article dspace.entity.type Publication relation.isOrgUnitOfPublication 82295b2b-0f85-4929-9659-075c93e82c48
##### Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1996_Levine_CriticalExponents.pdf
Size:
262.76 KB
Format: