Stick-slip and creep behavior in lubricated granular material: Insights into the brittle-ductile transition

Thumbnail Image
Date
2014-05-28
Authors
Hayman, Nicholas
Lavier, Luc
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Reber, Jacqueline
Associate Professor
Research Projects
Organizational Units
Organizational Unit
Geological and Atmospheric Sciences

The Department of Geological and Atmospheric Sciences offers majors in three areas: Geology (traditional, environmental, or hydrogeology, for work as a surveyor or in mineral exploration), Meteorology (studies in global atmosphere, weather technology, and modeling for work as a meteorologist), and Earth Sciences (interdisciplinary mixture of geology, meteorology, and other natural sciences, with option of teacher-licensure).

History
The Department of Geology and Mining was founded in 1898. In 1902 its name changed to the Department of Geology. In 1965 its name changed to the Department of Earth Science. In 1977 its name changed to the Department of Earth Sciences. In 1989 its name changed to the Department of Geological and Atmospheric Sciences.

Dates of Existence
1898-present

Historical Names

  • Department of Geology and Mining (1898-1902)
  • Department of Geology (1902-1965)
  • Department of Earth Science (1965-1977)
  • Department of Earth Sciences (1977-1989)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

Crustal deformation can occur via stick-slip events, viscous creep, or strain transients at variable rates. Here we explore such strain transients with physical experiments comprising a quasi-two-dimensional shear zone with elastic, acrylic discs and interstitial viscous silicone. Experiments of solely elastic discs produce stick-slip events and an overall (constant volume) strengthening. The addition of the viscous silicone enhances localization but does not greatly change the overall pattern of strengthening. It does, however, damp the stick-slip events, leading to transient, creep-like behavior that approaches the behavior of a Maxwell body. There is no gradual transition from frictional to viscous deformation with increasing amounts of silicone, suggesting that the mixed rheology is in effect as soon as an interstitial fluid is present. Our experiments support the hypothesis that a possible cause for strain transients in nature is an interstitial viscous phase in shear zones.

Comments

This article is published as Reber, Jacqueline E., Nicholas W. Hayman, and Luc L. Lavier. "Stick‐slip and creep behavior in lubricated granular material: Insights into the brittle‐ductile transition." Geophysical Research Letters 41, no. 10 (2014): 3471-3477. DOI:10.1002/2014GL059832. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2014
Collections