Optical Properties of AgCl, AgBr, T1C1, and T1Br under Hydrostatic Pressure

Thumbnail Image
Date
1969-04-01
Authors
Brothers, A. D.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Abstract

The pressure shifts of the optical absorption edges in four thallium and silver halides at 10°K were determined to be, in units of 10−6 eV/atm, -1.5 (AgCl), -1.9 (AgBr), -18 (TlCl), and -16 (TlBr). The pressure shifts of the first exciton peaks in thin evaporated films of these salts were measured at 80°K. In the same units these are 6.2 (AgCl), 6.4 and 5.6 (AgBr doublet), -13.9 (TlCl), and -13.4 (TlBr). The similarity of the pressure coefficients of the absorption edge in the two silver halides is evidence that the same indirect transition is responsible for the edge in both salts, presumably L3′→Γ1. The deformation potentials for the first direct exciton in the silver halides are approximately the same as those for the corresponding transitions in KBr and KI. The similarity of the pressure coefficients of the absorption edge and exciton peaks in the thallium salts is evidence that the absorption edge in these salts is the tail of the first direct exciton peak. The "anomalous" red shift upon cooling of the absorption edge and exciton peak in the thallium halides is shown to be the effect of thermal contraction.

Comments

This article is from Physical Review 180 (1969): 911, doi:10.1103/PhysRev.180.911. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 1969
Collections